

CSE 417
Algorithms and Complexity

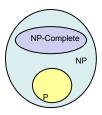
Autumn 2020 Lecture 28 NP-Completeness

Announcements

- Homework 9, Deadline, Sunday December 13
- · Exam practice problems on course homepage
- Final Exam: Monday, December 14
 - 24 hour take home exam
 - Target: 2 to 4 hours of work time
- · Approximate grade weighting
 - -75% HW, 25% Final

NP Completeness

The Universe



Polynomial Time

- P: Class of problems that can be solved in polynomial time
 - Corresponds with problems that can be solved efficiently in practice
 - Right class to work with "theoretically"
- · Decision Problems
 - Theory developed in terms of yes/no problems

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where "yes" instances have polynomial time checkable certificates

Certificate examples

- · Independent set of size K
 - The Independent Set
- · Satifisfiable formula
 - Truth assignment to the variables
- · Hamiltonian Circuit Problem
 - A cycle including all of the vertices
- · K-coloring a graph
 - Assignment of colors to the vertices

Certifiers and Certificates: 3-Satisfiability

SAT: Does a given CNF formula have a satisfying formula

Certificate: An assignment of truth values to the n boolean variables

Certifier: Check that each clause has at least one true literal,

instance s

$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4})$$

certificate t

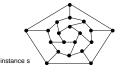
 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$

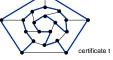
Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.





Polynomial time reductions

- · Y is Polynomial Time Reducible to X
 - Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
 - Notations: Y <_P X

Composability Lemma

• If $X <_P Y$ and $Y <_P Z$ then $X <_P Z$

Lemmas

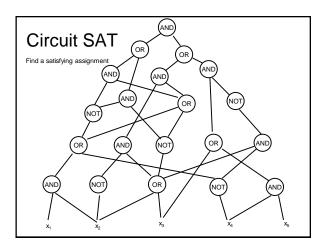
- Suppose Y <_P X. If X can be solved in polynomial time, then Y can be solved in polynomial time.
- Suppose Y <_P X. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

- · A problem X is NP-complete if
 - X is in NP
 - For every Y in NP, $Y <_P X$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and X <_P Z
 Then Z is NP-Complete

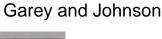
Cook's Theorem

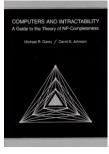
 The Circuit Satisfiability Problem is NP-Complete



Proof of Cook's Theorem

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable





History

Jack Edmonds

- Identified NP

Steve Cook

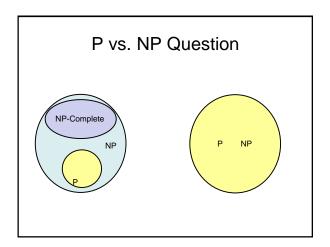
Cook's Theorem – NP-Completeness

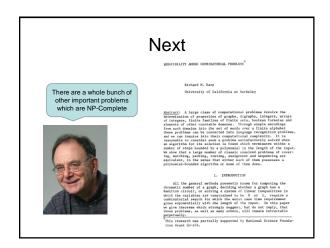
Dick Karp

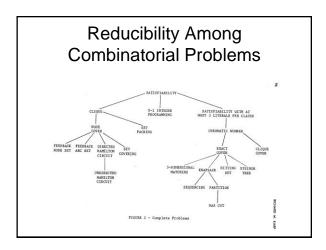
 Identified the "standard" collection of NP-Complete Problems

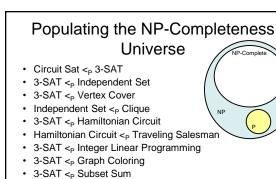
Leonid Levin

- Independent discovery of NP-Completeness in USSR









deadlines

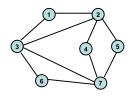
Subset Sum < P Scheduling with Release times and

Literal: A Boolean variable or its negation. $x_i \text{ or } \overline{x_i}$ Clause: A disjunction of literals. $C_j = x_1 \vee \overline{x_2} \vee x_3$ Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses. $\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$ SAT: Given CNF formula Φ , does it have a satisfying truth assignment? 3-SAT: SAT where each clause contains exactly 3 literals. $\text{Ex} \quad \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(x_2 \vee x_3\right) \wedge \left(\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}\right)$ Yes: x_i = true, x_2 = true x_3 = false.

Theorem. 3-SAT is NP-complete. Pf. Suffices to show that CIRCUIT-SAT $\leq_P 3$ -SAT since 3-SAT is in NP. = Let K be any circuit. $= \text{Create a } 3\text{-SAT variable } x_0 \text{ for each circuit element i.}$ = Make circuit compute correct values at each node: $= \text{Vs.}_2 = \text{Vs.}_3 \qquad \text{add } 2 \text{ clauses:} \qquad \text{Vs.}_2 \text{Vs.}_3 \text{Vs.}_3 \text{Vs.}_3 \text{Vs.}_3 \text{Vs.}_4 \text{Vs.}_5 \text{Vs.}_3 \text{Vs.}_4 \text{Vs.}_5 \text{Vs.}_2 \text{Vs.}_3 \text{Vs.}_4 \text{Vs.}_5 \text{Vs.}_2 \text{Vs.}_3 \text{Vs.}_4 \text{Vs.}_5 \text{Vs.}_2 \text{Vs.}_3 \text{Vs.}_4 \text{Vs.}_5 \text{Vs.}_2 \text{Vs.}_4 \text{Vs.}_5 \text{Vs.}_4 \text{Vs.}_5 \text{Vs.}_5 \text{Vs.}_6 \text{Vs.}_6$

Independent Set

- · Independent Set
 - Graph G = (V, E), a subset S of the vertices is independent if there are no edges between vertices in S



Satisfiability Reduces to Independent Set Claim. 3-SAT \leq_P INDEPENDENT-SET. Pf. Given an instance Φ of 3-SAT, we construct an instance Φ of INDEPENDENT-SET that has an independent set of size Φ if Φ is satisfiable. Construction. Gonnect 3 literals in a clause in a triangle. Connect literal to each of its negations.

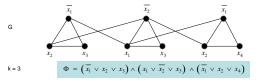
3 Satisfiability Reduces to Independent Set Claim. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. ⇒ Let S be independent set of size k.

7. ⇒ Let S be independent set of size k.

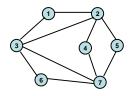
- S must contain exactly one vertex in each triangle.
 Set these literals to true.
 ← and any other variables in a contained.
- Truth assignment is consistent and all clauses are satisfied.

Pf $\, \subset \,$ Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. •



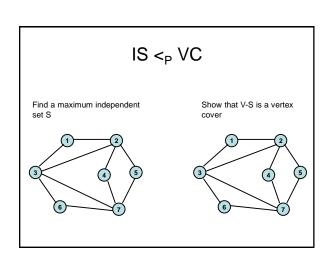
Vertex Cover

- Vertex Cover
 - Graph G = (V, E), a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S



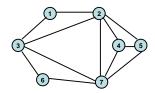
IS <P VC

- Lemma: A set S is independent iff V-S is a vertex cover
- To reduce IS to VC, we show that we can determine if a graph has an independent set of size K by testing for a Vertex cover of size n - K



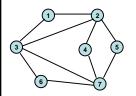
Clique

- Clique
 - Graph G = (V, E), a subset S of the vertices is a clique if there is an edge between every pair of vertices in S



Complement of a Graph

 Defn: G'=(V,E') is the complement of G=(V,E) if (u,v) is in E' iff (u,v) is not in E



•

3

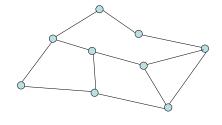
- (2)(4)(5)
- 6
- 7

IS <_P Clique

- Lemma: S is Independent in G iff S is a Clique in the complement of G
- To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K

Hamiltonian Circuit Problem

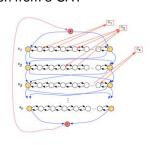
 Hamiltonian Circuit – a simple cycle including all the vertices of the graph



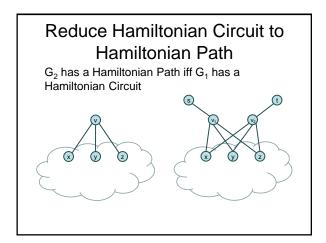
Thm: Hamiltonian Circuit is NP Complete

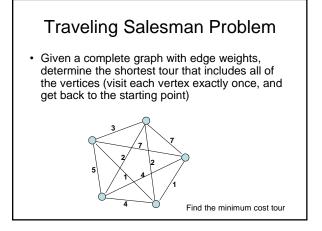
· Reduction from 3-SAT

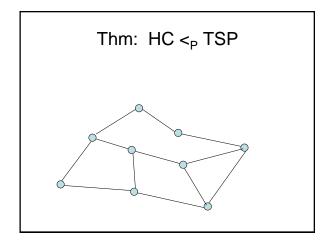
Page 475 in text

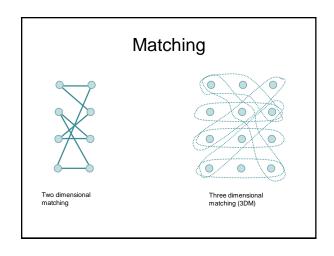


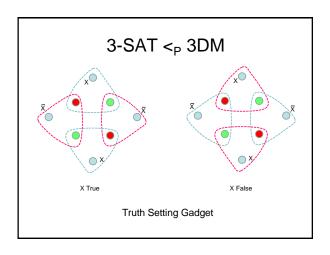
Clause Gadget $x_1 \lor x_2 \lor x_3$ $x_1 Group$ $x_2 Group$ $x_3 Group$













Graph Coloring • NP-Complete - Graph K-coloring - Graph 3-coloring