

CSE 417 Algorithms and Complexity

Autumn 2020 Lecture 27 Network Flow Applications NP-Completeness

Announcements

- · Homework 9
- · Exam practice problems on course homepage
- Final Exam: Monday, December 14
 - 24 hour take home exam
 - Target: 2 to 4 hours of work time

Wed, Dec 2	Net Flow Applications		
Fri, Dec 4	Net Flow Applications + NP-Completeness		
Mon, Dec 7	NP-Completeness		
Wed, Dec 9	NP-Completeness		
Fri, Dec 11	Beyond NP-Completeness		
Mon, Dec 14	Final Exam		

Problem Reduction

- · Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem R
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- · Theoretical
 - Show that Problem B is at least as hard as Problem A

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- · Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T

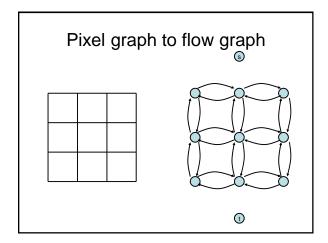
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T $\,$

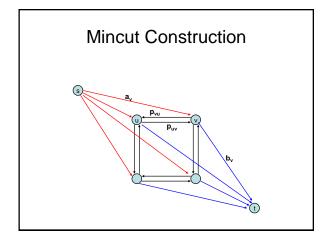
Image Segmentation

 Separate foreground from background

Image analysis

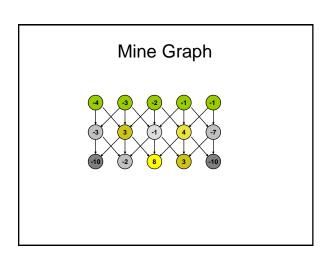
- a_i: value of assigning pixel i to the foreground
- b_i: value of assigning pixel i to the background
- p_{ij} : penalty for assigning i to the foreground, j to the background or vice versa
- · A: foreground, B: background
- Q(A,B) = $\Sigma_{\{i \text{ in A}\}}a_i + \Sigma_{\{j \text{ in B}\}}b_j \Sigma_{\{(i,j) \text{ in E, } i \text{ in A, } j \text{ in B}\}}p_{ij}$

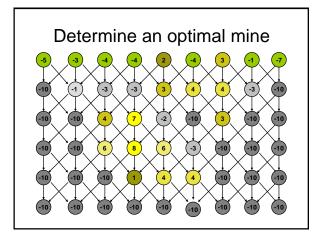




Open Pit Mining

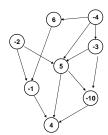
- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation





Generalization

- Precedence graph G=(V,E)
- Each v in V has a profit p(v)
- A set F is feasible if when w in F, and (v,w) in E, then v in F.
- Find a feasible set to maximize the profit

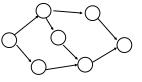


Min cut algorithm for profit maximization

 Construct a flow graph where the minimum cut identifies a feasible set that maximizes profit

Precedence graph construction

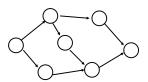
- Precedence graph G=(V,E)
- Each edge in E has infinite capacity
- · Add vertices s, t
- Each vertex in V is attached to s and t with finite capacity edges



Find a finite value cut with at least two vertices on each side of the cut

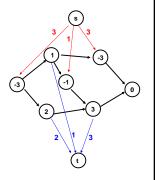
The sink side of a finite cut is a feasible set

- No edges permitted from S to T
- If a vertex is in T, all of its ancestors are in T



Setting the costs

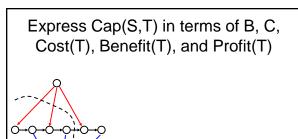
- If p(v) > 0,
 - cap(v,t) = p(v)
 - cap(s,v) = 0
- If p(v) < 0
 - cap(s,v) = -p(v)
 - cap(v,t) = 0
- If p(v) = 0
 - cap(s,v) = 0
 - cap(v,t) = 0



Minimum cut gives optimal solution Why?

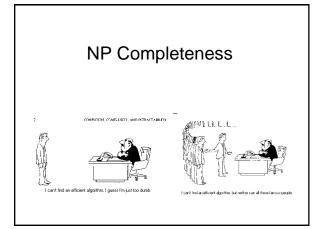
Computing the Profit

- $Cost(W) = \sum_{\{w \text{ in } W; p(w) < 0\}} -p(w)$
- Benefit(W) = $\Sigma_{\{w \text{ in W; p(w) > 0}\}} p(w)$
- Profit(W) = Benefit(W) Cost(W)
- · Maximum cost and benefit
 - -C = Cost(V)
 - -B = Benefit(V)



 $\begin{aligned} Cap(S,T) &= Cost(T) + Ben(S) = Cost(T) + Ben(S) + Ben(T) - Ben(T) \\ &= B + Cost(T) - Ben(T) = B - Profit(T) \end{aligned}$

NP-Completeness

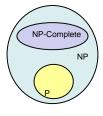


Algorithms vs. Lower bounds

- Algorithmic Theory
 - What we can compute
 - I can solve problem X with resources R
 - Proofs are almost always to give an algorithm that meets the resource bounds
- Lower bounds
 - How do we show that something can't be done?

Theory of NP Completeness

The Universe



Polynomial Time

- P: Class of problems that can be solved in polynomial time
 - Corresponds with problems that can be solved efficiently in practice
 - Right class to work with "theoretically"

Decision Problems

- Theory developed in terms of yes/no problems
 - Independent set
 - Given a graph G and an integer K, does G have an independent set of size at least K
 - Network Flow
 - Given a graph G with edge capacities, a source vertex s, and sink vertex t, and an integer K, does the graph have flow function with value at least K

Definition of P

Decision problems for which there is a polynomial time algorithm

Problem	Description	Algorithm	Yes	No
MULTIPLE	Is x a multiple of y?	Grade school division	51, 17	51, 16
RELPRIME	Are x and y relatively prime?	Euclid's algorithm	34, 39	34, 51
PRIMES	Is x prime?	Agrawal, Kayal, Saxena (2002)	53	51
EDIT- DISTANCE	Is the edit distance between x and y less than 5?	Dynamic programming	niether neither	acgggt ttttta
LSOLVE	Is there a vector x that satisfies Ax = b?	Gaussian elimination	0 1 1 4 2 4 -2 4 2 36	1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where "yes" instances have polynomial time checkable certificates

Certificate examples

- · Independent set of size K
 - The Independent Set
- · Satifisfiable formula
 - Truth assignment to the variables
- · Hamiltonian Circuit Problem
 - A cycle including all of the vertices
- · K-coloring a graph
 - Assignment of colors to the vertices

Certifiers and Certificates: 3-Satisfiability

SAT: Does a given CNF formula have a satisfying formula

Certificate: An assignment of truth values to the n boolean variables

Certifier: Check that each clause has at least one true literal

instance s

$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4})$$

certificate t

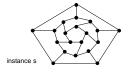
 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$

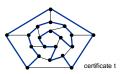
Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.





Polynomial time reductions

- · Y is Polynomial Time Reducible to X
 - Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
 - Notations: $Y <_P X$

Composability Lemma

• If $X <_P Y$ and $Y <_P Z$ then $X <_P Z$

Lemmas

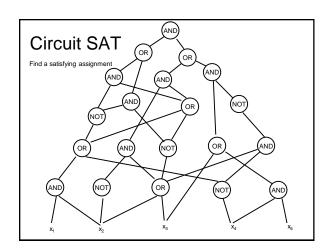
- Suppose Y <_P X. If X can be solved in polynomial time, then Y can be solved in polynomial time.
- Suppose Y <_P X. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

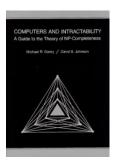
- · A problem X is NP-complete if
 - -X is in NP
 - For every Y in NP, $Y <_P X$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and X <_P Z
 Then Z is NP-Complete

Cook's Theorem

 The Circuit Satisfiability Problem is NP-Complete



Garey and Johnson



History

Jack Edmonds

Steve Cook

Dick Karp

 Identified the "standard" collection of NP-Complete Problems

- Cook's Theorem - NP-Completeness

Leonid Levin

- Independent discovery of NP-Completeness in USSR

