

CSE 417 Algorithms and Complexity

Autumn 2020 Lecture 26 Network Flow Applications

Announcements

- Homework 8 and 9
- Exam practice problems on course homepage
- Final Exam: Monday, December 14
 - 24 hour take home exam
 - Target: 2 to 4 hours of work time

Wed, Dec 2	Net Flow Applications
Fri, Dec 4	Net Flow Applications + NP-Completeness
Mon, Dec 7	NP-Completeness
Wed, Dec 9	NP-Completeness
Fri, Dec 11	Beyond NP-Completeness
Mon, Dec 14	Final Exam

- There exists a cut S, T such that Flow(S,T) = Cap(S,T)
- Proof also shows that Ford Fulkerson algorithm finds a maximum flow

Network flow performance

- Ford-Fulkerson algorithm – O(mC)
- Find the maximum capacity augmenting path – O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path – O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph

 O(mnlog n) time algorithm for network flow
- Preflow Push Algorithm
- O(mnlog n)

Problem Reduction

- Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

Construct an equivalent minimization problem

Reduce MST to MST+

- P1: MST
- Find the Minimum spanning tree for a graph with integer costs
 P2: MST+
- Find the Minimum Spanning Tree for a graph with <u>non-negative</u> integer costs

- A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- · Find a matching as large as possible

Multi-source network flow

- Multi-source network flow
 - Sources s_1, s_2, \ldots, s_k
 - Sinks t_1, t_2, \ldots, t_j
- · Solve with Single source network flow

Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n A set of reviewers R_1, \ldots, R_m
- •
- Paper P_i requires A_i reviewers Reviewer R_j can review B_j papers
- For each reviewer $R_j,$ there is a list of paper L_{j1}, \ldots, L_{jk} that R_j is gualified to review

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- · Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Image analysis

- a_i: value of assigning pixel i to the foreground
- b_i: value of assigning pixel i to the background
- p_{ij} penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A,B) = \sum_{\{i \text{ in } A\}} a_i + \sum_{\{j \text{ in } B\}} b_j \sum_{\{(i,j) \text{ in } E, i \text{ in } A, j \text{ in } B\}} p_{ij}$

Application of Min-cut

- Open Pit Mining Problem
- Task Selection Problem
- Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Open Pit Mining

- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation

Computing the Profit

- Cost(W) = Σ_{w in W; p(w) < 0}-p(w)
- Benefit(W) = Σ_{w in W; p(w) > 0} p(w)
 Profit(W) = Benefit(W) Cost(W)
- · Maximum cost and benefit -C = Cost(V)
 - -B = Benefit(V)

