

Autumn 2020
Lecture 26
Network Flow Applications

Announcements

- Homework 8 and 9
- Exam practice problems on course homepage
- Final Exam: Monday, December 14
- 24 hour take home exam
- Target: 2 to 4 hours of work time

Wed, Dec 2	Net Flow Applications
Fri, Dec 4	Net Flow Applications + NP-Completeness
Mon, Dec 7	NP-Completeness
Wed, Dec 9	NP-Completeness
Fri, Dec 11	Beyond NP-Completeness
Mon, Dec 14	Final Exam

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Maxflow Algorithms
- Simple applications of Max Flow
- Non-simple applications of Max Flow

Cuts in a graph

- Cut: Partition of V into disjoint sets S , T with s in S and t in T.
- $\operatorname{Cap}(S, T)$: sum of the capacities of edges from S to T
- Problem: Find the s-t Cut with minimum capacity

Max Flow - Min Cut Theorem

- There exists a cut S, T such that $\operatorname{Flow}(\mathrm{S}, \mathrm{T})=\operatorname{Cap}(\mathrm{S}, \mathrm{T})$
- Proof also shows that Ford Fulkerson algorithm finds a maximum flow

Network flow performance

- Ford-Fulkerson algorithm - O(mC)
- Find the maximum capacity augmenting path - O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path
- $O\left(m^{2} n\right)$ time algorithm for network flow
- Find a blocking flow in the residual graph
- O(mnlog n) time algorithm for network flow
- Preflow Push Algorithm
- O(mnlog n)

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance of Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Problem Reduction Example

- Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: $8,-3,2,12,1,-6$

Construct an equivalent minimization problem

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Reduce MST to MST+

- P1: MST
- Find the Minimum spanning tree for a graph with integer costs
- P2: MST +
- Find the Minimum Spanning Tree for a graph with non-negative integer costs

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

Converting Matching to Network Flow

Resource Allocation:
 Assignment of reviewers

- A set of papers P_{1}, \ldots, P_{n}
- A set of reviewers R_{1}, \ldots, R_{m}
- Paper P_{i} requires A_{i} reviewers
- Reviewer R_{j} can review $B_{i j}$ papers
- For each reviewer R_{j}, there is a list of paper $L_{j 1}, \ldots$, $L_{j k}$ that R_{j} is qualified to review

Baseball elimination

- Can the Dinosaurs win the league?
- Remaining games:
- AB, AC, AD, AD, AD, $B C, B C, B C, B D, C D$

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dinosaurs	1	5

A team wins the league if it has strictly more wins than any other team at the end of the season
A team ties for first place if no team has more wins, and there is some other team with the same number of wins

Baseball elimination

- Can the Fruit Flies win or tie the league?
- Remaining games:
- AC, AD, AD, AD, AF, $B C, B C, B C, B C, B C$, $B D, B E, B E, B E, B E$, BF, CE, CE, CE, CF, $C F, D E, D F, E F, E F$

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
- Ants (2)
- Bees (3)
- Cockroaches (3)
- Dinosaurs (5)
- Earthworms (5)
- 18 games to play
- AC, AD, AD, AD, BC, BC,
$B C, B C, B C, B D, B E, B E$,
$B E, B E, C E, C E, C E, D E$

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

Minimum Cut Applications

- Image Segmentation
- Open Pit Mining / Task Selection Problem
- Reduction to Min Cut problem
S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Remaining games

$A C, A D, A D, A D, B C, B C, B C, B C, B C, B D, B E, B E, B E, B E, C E, C E, C E, D E$

Image Segmentation

- Separate foreground from background

Image analysis

- a_{i} : value of assigning pixel i to the foreground
- b_{i} : value of assigning pixel i to the background
- $p_{i j}$: penalty for assigning ito the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A, B)=\Sigma_{\{i \text { in } A\}} a_{i}+\Sigma_{\{j \text { in } B\}} b_{j}-\Sigma_{\{(i, j) \text { in } E, i \text { in } A, j \text { in } B\}} P_{i j}$

Application of Min-cut

- Open Pit Mining Problem
- Task Selection Problem
- Reduction to Min Cut problem
S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Open Pit Mining

- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation

Min cut algorithm for profit maximization

- Construct a flow graph where the minimum cut identifies a feasible set that maximizes profit

Find a finite value cut with at least two vertices on each side of the cut

Generalization

- Precedence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each vin V has a profit $\mathrm{p}(\mathrm{v})$
- A set F is feasible if when w in F, and (v, w) in E, then v in F.
- Find a feasible set to
 maximize the profit

Precedence graph construction

- Precedence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each edge in E has infinite capacity
- Add vertices s, t
- Each vertex in V is attached to s and t
 with finite capacity edges

The sink side of a finite cut is a feasible set

- No edges permitted from S to T
- If a vertex is in T, all of its ancestors are in T

Setting the costs

- If $p(v)>0$,
$-\operatorname{cap}(v, t)=p(v)$
$-\operatorname{cap}(\mathrm{s}, \mathrm{v})=0$
- If $p(v)<0$
$-c a p(s, v)=-p(v)$
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$
- If $p(v)=0$
$-\operatorname{cap}(s, v)=0$
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$

Computing the Profit

Express Cap(S,T) in terms of B, C, $\operatorname{Cost}(\mathrm{T})$, Benefit(T), and $\operatorname{Profit}(\mathrm{T})$

- $\left.\operatorname{Cost}(W)=\Sigma_{\{w \text { in }} w ; p(w)<0\right\}-p(w)$
- Benefit $(W)=\Sigma_{\{w \text { in } w ; p(w)>0\}} p(w)$
- $\operatorname{Profit}(\mathrm{W})=\operatorname{Benefit}(\mathrm{W})-\operatorname{Cost}(\mathrm{W})$
- Maximum cost and benefit
$-\mathrm{C}=\operatorname{Cost}(\mathrm{V})$
- B = Benefit (V)

$\operatorname{Computing}$ the Profit
- $\operatorname{Cost}(W)=\Sigma_{\{w \text { in } W ; p(w)<0\}} p(w)$
- $\left.\operatorname{Benefit}(W)=\Sigma_{\{w ; i n} ; p(w)>0\right\}$
- $\operatorname{Profit}(W)=\operatorname{Benefit}(W)-\operatorname{Cost}(W)$
- Maximum cost and benefit
$-C=\operatorname{Cost}(V)$
$-B=\operatorname{Benefit}(V)$

