

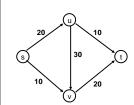
CSE 417 Algorithms and Complexity

Lecture 24 Network Flow, Part 1

Announcements

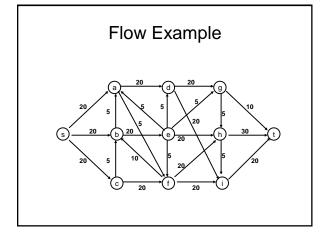
- · Homework 8 available
 - Due Friday, Dec 4 (accepted until Dec 6)
 - Three DP Problems, three netflow problems
- Happy Thanksgiving!

Network Flow

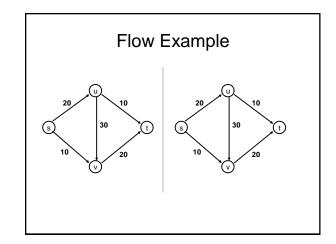

Outline

- · Network flow definitions
- Flow examples
- · Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

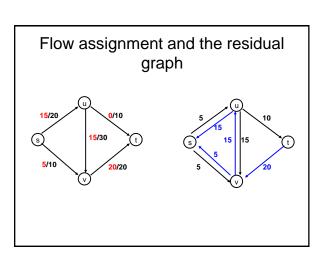

- Capacity
- Source, Sink
- · Capacity Condition
- Conservation Condition
- Value of a flow

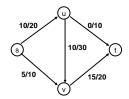
Flow Example



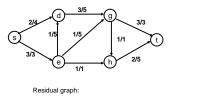
Network Flow Definitions

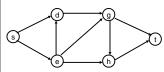
- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible



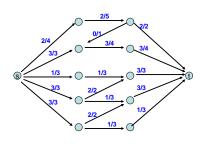

Residual Graph

- · Flow graph showing the remaining capacity
- Flow graph G, Residual Graph GR
 - -G: edge e from u to v with capacity c and flow f
 - $-G_R$: edge e' from u to v with capacity c-f
 - $-G_R$: edge e" from v to u with capacity f

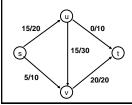


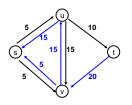

Augmenting Path Algorithm

- Augmenting path
 - Vertices $v_1, v_2, ..., v_k$
 - $v_1 = s, v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for j=1 ... k-1



Build the residual graph




Find two augmenting paths

Augmenting Path Lemma

- Let P = v₁, v₂, ..., v_k be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

Proof

- · Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?

_

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R

Find an s-t path P in G_R with capacity b > 0

Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations