CSE 417
 Algorithms and Complexity

Lecture 24
Network Flow, Part 1

Announcements

- Homework 8 available
- Due Friday, Dec 4 (accepted until Dec 6)
- Three DP Problems, three netflow problems
- Happy Thanksgiving!

Network Flow

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- Value of a flow

Flow Example

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e)>=0$
- Problem, assign flows $f(e)$ to the edges such that:
$-0<=\mathrm{f}(\mathrm{e})<=\mathrm{C}(\mathrm{e})$
- Flow is conserved at vertices other than s and t
- Flow conservation: flow going into a vertex equals the flow going out
- The flow leaving the source is a large as possible

Flow Example

Find a maximum flow

Flow Example

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_{R}
- G : edge e from u to v with capacity c and flow f
$-G_{R}$: edge e' from u to v with capacity $c-f$
$-G_{R}$: edge e" from v to u with capacity f

Flow assignment and the residual graph

Augmenting Path Algorithm

- Augmenting path
- Vertices $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}$
- $\mathrm{v}_{1}=\mathrm{s}, \mathrm{v}_{\mathrm{k}}=\mathrm{t}$
- Possible to add b units of flow between v_{j} and v_{j+1} for $\mathrm{j}=1 \ldots \mathrm{k}$-1

Build the residual graph

Residual graph:

Find two augmenting paths

Augmenting Path Lemma

- Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

Proof

- Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?

Ford-Fulkerson Algorithm (1956)

while not done
Construct residual graph G_{R}
Find an s-t path P in G_{R} with capacity $b>0$
Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

