CSE 417 Algorithms with Complexity

Richard Anderson - Lecture 23
Shortest Paths Problem and Dynamic Programming

Announcements

- HW 7, 8, 9
- Reading: Wednesday + Next Week
- Network flow
- 7.1, 7.2: Ford-Fulkerson Algorithm
- Applications of Network flow
- 7.5-7.12: Bipartite Matching, Image segmentation, Baseball elimination, etc.

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- O(mlog n) time, positive cost edges
- Bellman-Ford Algorithm
- O(mn) time for graphs which can have negative cost edges

Dynamic Programming

- Express problem as an optimization
- Order subproblems so that results are computed in proper order

Shortest Paths as DP

- $\operatorname{Dist}_{s}[\mathrm{~s}]=0$
- $\operatorname{Dist}_{s}[v]=\min _{w}\left[\right.$ Dist $\left._{s}[w]+c_{w v}\right]$
- How do we order the computation
- Directed Acyclic graph: Topological Sort
- Dijkstra's algorithm determines an order

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most $\mathrm{n}-1$ edges

Shortest paths with a given number of edges

- Find the shortest path from s to w with exactly k edges

Express as a recurrence

- Compute distance from starting vertex s
- $\operatorname{Opt}_{k}(w)=\min _{x}\left[\operatorname{Opt}_{k-1}(x)+c_{x w}\right]$
- $\mathrm{Opt}_{0}(\mathrm{w})=0$ if $\mathrm{w}=\mathrm{s}$ and infinity otherwise

Algorithm, Version 1

for each w
$\mathrm{M}[0, w]=$ infinity;
$\mathrm{M}[0, \mathrm{~s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
$M[i, w]=\min _{x}(M[i-1, x]+\operatorname{cost}[x, w]) ;$

Algorithm, Version 2

for each w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[0, \mathrm{~s}]=0$;
for $i=1$ to $n-1$
for each w
$M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right) ;$

Algorithm, Version 3
for each w
$M[w]=$ infinity;
$\mathrm{M}[\mathrm{s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
$\mathrm{M}[\mathrm{w}]=\min \left(\mathrm{M}[\mathrm{w}], \min _{\mathrm{x}}(\mathrm{M}[\mathrm{x}]+\operatorname{cost}[\mathrm{x}, \mathrm{w}])\right) ;$

Example:

Correctness Proof for Algorithm 3

- Key lemmas, for all w:
- There exists a path of length M[w] from s to w
- At the end of iteration $\mathrm{i}, \mathrm{M}[\mathrm{w}]<=\mathrm{M}[\mathrm{i}, \mathrm{w}]$;

Algorithm, Version 4

for each w
$\mathrm{M}[\mathrm{w}]=$ infinity;
$\mathrm{M}[\mathrm{s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
for each x
if $(M[w]>M[x]+\operatorname{cost}[x, w])$
$P[w]=x ;$
$M[w]=M[x]+\operatorname{cost}[x, w] ;$

Theorem
If the pointer graph has a cycle, then the graph has a negative cost cycle

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If $P[w]=x$ then $M[w]>=M[x]+\operatorname{cost}(x, w)$
- Equal when w is updated
- M[x] could be reduced after update
- Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}$ be a cycle in the pointer graph with $\left(v_{k}, v_{1}\right)$ the last edge added
- Just before the update
- $M\left[v_{j}\right]>=M\left[v_{j+1}\right]+\operatorname{cost}\left(v_{j+1}, v_{j}\right)$ for $j<k$
- $M\left[v_{k}\right]>M\left[v_{1}\right]+\operatorname{cost}\left(v_{1}, v_{k}\right)$
- Adding everything up
- $0>\operatorname{cost}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\operatorname{cost}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\ldots+\operatorname{cost}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

- What if you want to find negative cost cycles?

What about finding Longest
 Paths in a directed graph

- Can we just change Min to Max?

