

1

Reading

- Dynamic Programming Examples:
-6.1-6.2, Weighted Interval Scheduling
- 6.3 Segmented Least Squares
- 6.4 Knapsack and Subset Sum
- 6.6 String Alignment
- 6.7* String Alignment in linear space
- 6.8 Shortest Paths (again)
- 6.9 Negative cost cycles
- How to make an infinite amount of money

3

Weighted Interval Scheduling

Opt[j] = max (Opt[j - 1], $\mathrm{w}_{\mathrm{j}}+\operatorname{Opt}[\mathrm{p}[\mathrm{j}]$])
Record which case is used in Opt computation

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 2 & 4 & 9 & 9 & 9 & 16 & 16 \\
\hline
\end{array}
$$

\qquad

B	B	B	A	A	B	A

4
6
7
6

5

Announcements

2

Dynamic Programming

- Key ideas
- Construct optimization function
- Express solution in terms of sub problems
- Order sub problems to avoid recomputation
- Important detail
- Record information to construct solution

4

6

7

9

Optimal interpolation with two segments

- Give an equation for the optimal interpolation of p_{1}, \ldots, p_{n} with two line segments
- $\mathrm{E}_{\mathrm{i}, \mathrm{j}}$ is the least squares error for the optimal line interpolating $p_{i}, \ldots p_{j}$

8

Notation

- Points $p_{1}, p_{2}, \ldots, p_{n}$ ordered by x-coordinate $\left(p_{i}=\left(x_{i}, y_{i}\right)\right)$
- $\mathrm{E}_{\mathrm{i}, \mathrm{j}}$ is the least squares error for the optimal line interpolating $p_{i}, \ldots p_{j}$

10

Optimal interpolation with k segments

- Optimal segmentation with three segments
$-\operatorname{Min}_{\mathrm{i}, \mathrm{j}}\left\{\mathrm{E}_{1, \mathrm{i}}+\mathrm{E}_{\mathrm{i}, \mathrm{j}}+\mathrm{E}_{\mathrm{j}, \mathrm{n}}\right\}$
$-\mathrm{O}\left(\mathrm{n}^{2}\right)$ combinations considered
- Generalization to k segments leads to considering $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}-1}\right)$ combinations

Opt $_{k}[j]:$ Minimum error approximating
$p_{1} \ldots p_{j}$ with k segments
How do you express Opt $[j]$ in terms of
Opt $_{k-1}[1], \ldots$, Opt $_{k-1}[j]$?

13

15

Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x \#Segments

17

Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of $k-1$ segments on a smaller problem
\bigcirc

-

- 0
-

14

Determining the solution

- When Opt[k,j] is computed, record the value of i that minimized the sum
- Store this value in an auxiliary array
- Use to reconstruct solution

16

Penalty cost measure

- $\operatorname{Opt}[\mathrm{j}]=\min \left(\mathrm{E}_{1, \mathrm{j},}, \min _{\mathrm{i}}\left(\operatorname{Opt}[\mathrm{i}]+\mathrm{E}_{\mathrm{i}, \mathrm{j}}+\mathrm{P}\right)\right)$

19

Adding a variable for Weight

- Opt[j, K] the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{j}}\right\}$ that sums to at most K
- $\{2,4,7,10\}$
- Opt[2, 7] =
- Opt[3, 7] =
- Opt[3,12] =
- Opt[4,12] =

21

23

Subset Sum Problem

- Let $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}=\{6,8,9,11,13,16,18,24\}$
- Find a subset that has as large a sum as possible, without exceeding 50

20

Subset Sum Recurrence

- Opt[$j, \mathrm{~K}]$ the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{j}}\right\}$ that sums to at most K

22

Subset Sum Code
for $\mathrm{j}=1$ to n
for $\mathrm{k}=1$ to w
Opt $[j, k]=\max \left(\right.$ Opt $[\mathrm{j}-1, \mathrm{k}]$, Opt $\left.\left[j-1, \mathrm{k}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$
24

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$
- Weights $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- Values $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
- Bound K
- Find set S of indices to:
- Maximize $\sum_{\text {is } s \mathrm{~V}_{\mathrm{i}}}$ such that $\sum_{\text {is } \mathrm{S}} \mathrm{W}_{\mathrm{i}}<=\mathrm{K}$

25

Knapsack Grid $\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{v}_{\mathrm{j}}\right)$																			
4																			
3																			
2																			
1																			
	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0

Weights $\{2,4,7,10\}$ Values: $\{3,5,9,16\}$

27

Knapsack Recurrence

Subset Sum Recurrence:
Opt[j, K] = max (Opt[j $\left.-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$

Knapsack Recurrence:

26

Alternate approach for Subset Sum

- Alternate formulation of Subset Sum dynamic programming algorithm
- Sum $[i, K]=$ true if there is a subset of $\left\{\mathrm{w}_{1}, \ldots \mathrm{w}_{\mathrm{i}}\right\}$ that sums to exactly K , false otherwise
$-\operatorname{Sum}[i, K]=\operatorname{Sum}[i-1, K]$ OR Sum[i $\left.-1, K-w_{i}\right]$
- Sum $[0,0]=$ true; Sum $[i, 0]=$ false for $i!=0$
- To allow for negative numbers, we need to fill in the array between $\mathrm{K}_{\text {min }}$ and $\mathrm{K}_{\text {max }}$

28

Run time for Subset Sum

- With n items and target sum K , the run time is $\mathrm{O}(\mathrm{nK})$
- If K is $1,000,000,000,000,000,000,000,000$ this is very slow
- Alternate brute force algorithm: examine all subsets: $\mathrm{O}\left(\mathrm{n}^{2}{ }^{\mathrm{n}}\right)$

