Dynamic Programming

Reading

• Dynamic Programming Examples:
 – 6.1-6.2. Weighted Interval Scheduling
 – 6.3 Segmented Least Squares
 – 6.4 Knapsack and Subset Sum
 – 6.6 String Alignment
 • 6.7* String Alignment in linear space
 – 6.8 Shortest Paths (again)
 – 6.9 Negative cost cycles
 • How to make an infinite amount of money

Weighted Interval Scheduling

$$\text{Opt} [j] = \max (\text{Opt} [j - 1], w_j + \text{Opt} [p[j]])$$

Record which case is used in Opt computation

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>9</th>
<th>9</th>
<th>16</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

Optimal linear interpolation

$$\text{Error} = \sum (y_i - ax_i - b)^2$$
What is the optimal linear interpolation with three line segments

What is the optimal linear interpolation with two line segments

What is the optimal linear interpolation with \(n \) line segments

Notation

- Points \(p_1, p_2, \ldots, p_n \) ordered by x-coordinate \((p_i = (x_i, y_i)) \)
- \(E_{ij} \) is the least squares error for the optimal line interpolating \(p_i, \ldots, p_j \)

Optimal interpolation with two segments

- Give an equation for the optimal interpolation of \(p_1, \ldots, p_n \) with two line segments

- \(E_{ij} \) is the least squares error for the optimal line interpolating \(p_i, \ldots, p_j \)

Optimal interpolation with \(k \) segments

- Optimal segmentation with three segments
 - \(\text{Min}_{ij} \{ E_{ij} + E_{ij} + E_{ij} \} \)
 - \(O(n^2) \) combinations considered
- Generalization to \(k \) segments leads to considering \(O(n^{k-1}) \) combinations
Opt\(_k[j]\) : Minimum error approximating \(p_1...p_j\) with \(k\) segments

How do you express Opt\(_k[j]\) in terms of Opt\(_{k-1}[1],...,\text{Opt}_{k-1}[j]\)?

Optimal sub-solution property

Optimal solution with \(k\) segments extends an optimal solution of \(k-1\) segments on a smaller problem

Optimal multi-segment interpolation

Compute Opt\([k, j]\) for \(0 < k < j < n\)

\[
\text{for } j = 1 \text{ to } n \\
\quad \text{Opt}[1, j] = E_{1,j};
\]

\[
\text{for } k = 2 \text{ to } n-1 \\
\quad \text{for } j = 2 \text{ to } n \\
\quad \quad t = E_{1,j} \\
\quad \quad \text{for } i = 1 \text{ to } j-1 \\
\quad \quad \quad t = \min(t, \text{Opt}[k-1, i] + E_{i,j}) \\
\quad \quad \text{Opt}[k, j] = t
\]

Determining the solution

• When Opt\([k,j]\) is computed, record the value of \(i\) that minimized the sum
• Store this value in an auxiliary array
• Use to reconstruct solution

Variable number of segments

• Segments not specified in advance
• Penalty function associated with segments
• Cost = Interpolation error + \(C\) x #Segments

Penalty cost measure

\[
\text{Opt}[j] = \min(E_{1,j}, \min_i(\text{Opt}[i] + E_{i,j} + P))
\]
Summary for Segmented Interpolation

\[\text{Opt}_k[j] = \min_i \{ \text{Opt}_{k-1}[i] + E_{i,j} \} \text{ for } 0 < i < j \]

Optimal solution with \(k \) segments extends an optimal solution of \(k-1 \) segments on a smaller problem.

Subset Sum Problem

- Let \(w_1, \ldots, w_n = \{6, 8, 9, 11, 13, 16, 18, 24\} \)
- Find a subset that has as large a sum as possible, without exceeding 50

Adding a variable for Weight

- \(\text{Opt}[j, K] \) the largest subset of \(\{w_1, \ldots, w_j\} \) that sums to at most \(K \)
- \(\{2, 4, 7, 10\} \)
 - \(\text{Opt}[2, 7] = \)
 - \(\text{Opt}[3, 7] = \)
 - \(\text{Opt}[3, 12] = \)
 - \(\text{Opt}[4, 12] = \)

Subset Sum Recurrence

- \(\text{Opt}[j, K] \) the largest subset of \(\{w_1, \ldots, w_j\} \) that sums to at most \(K \)

Subset Sum Grid

\[
\begin{array}{cccccccc}
4 & 3 & 2 & 1 & 0 & 0 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\(\{2, 4, 7, 10\} \)

Subset Sum Code

\[
\text{for } j = 1 \text{ to } n \\
\text{for } k = 1 \text{ to } W \\
\text{Opt}[j, k] = \max(\text{Opt}[j-1, k], \text{Opt}[j-1, k-w_j] + w_j)
\]
Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weight
- Items \(\{I_1, I_2, \ldots, I_n\} \)
 - Weights \(\{w_1, w_2, \ldots, w_n\} \)
 - Values \(\{v_1, v_2, \ldots, v_n\} \)
 - Bound \(K \)
- Find set \(S \) of indices to:
 - Maximize \(\sum_{i \in S} v_i \) such that \(\sum_{i \in S} w_i \leq K \)

Knapsack Recurrence

Subset Sum Recurrence:
\[
\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + v_j)
\]

Knapsack Recurrence:

Alternate approach for Subset Sum

- Alternate formulation of Subset Sum dynamic programming algorithm
 - \(\text{Sum}[i, K] = \text{true} \) if there is a subset of \(\{w_1, \ldots, w_i\} \) that sums to exactly \(K \), \(\text{false} \) otherwise
 - \(\text{Sum}[i, K] = \text{Sum}[i - 1, K] \text{ OR } \text{Sum}[i - 1, K - w_i] \)
 - \(\text{Sum}[0, 0] = \text{true}; \text{Sum}[i, 0] = \text{false} \) for \(i \neq 0 \)

- To allow for negative numbers, we need to fill in the array between \(K_{\min} \) and \(K_{\max} \)

Run time for Subset Sum

- With \(n \) items and target sum \(K \), the run time is \(O(nK) \)
- If \(K \) is \(1,000,000,000,000,000,000,000,000,000 \), this is very slow
- Alternate brute force algorithm: examine all subsets: \(O(n2^n) \)