
CSE 417 Algorithms

Lecture 20, Autumn 2020

Dynamic Programming

Announcements

Reading

• Dynamic Programming Examples:

– 6.1-6.2, Weighted Interval Scheduling

– 6.3 Segmented Least Squares

– 6.4 Knapsack and Subset Sum

– 6.6 String Alignment

• 6.7* String Alignment in linear space

– 6.8 Shortest Paths (again)

– 6.9 Negative cost cycles

• How to make an infinite amount of money

Dynamic Programming

• Key ideas

– Construct optimization function

– Express solution in terms of sub problems

– Order sub problems to avoid recomputation

• Important detail

– Record information to construct solution

Weighted Interval Scheduling
Opt[j] = max (Opt[j – 1], wj + Opt[p[j]])

Opt[j] : Maximum value solution from I1, I2, . . . Ij

Consider solutions not containing, and containing Ij

Record which case is used in Opt computation

4

7

4

6

7

6

2
2 4 9 9 9 16 16

B B B A A B A

Optimal linear interpolation

Error = S(yi –axi – b)2

What is the optimal linear

interpolation with three line segments

What is the optimal linear

interpolation with two line segments

What is the optimal linear

interpolation with n line segments

Notation

• Points p1, p2, . . ., pn ordered by

x-coordinate (pi = (xi, yi))

• Ei,j is the least squares error for the

optimal line interpolating pi, . . . pj

Optimal interpolation with two

segments

• Give an equation for the optimal interpolation of

p1,…,pn with two line segments

• Ei,j is the least squares error for the optimal line

interpolating pi, . . . pj

Optimal interpolation with k

segments

• Optimal segmentation with three segments

– Mini,j{E1,i + Ei,j + Ej,n}

– O(n2) combinations considered

• Generalization to k segments leads to

considering O(nk-1) combinations

Optk[j] : Minimum error approximating

p1…pj with k segments

How do you express Optk[j] in terms of

Optk-1[1],…,Optk-1[j]?

Optimal sub-solution property

Optimal solution with k segments extends

an optimal solution of k-1 segments on a

smaller problem

Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

for j = 1 to n

Opt[1, j] = E1,j;

for k = 2 to n-1

for j = 2 to n

t = E1,j
for i = 1 to j-1

t = min(t, Opt[k-1, i] + Ei,j)

Opt[k, j] = t

Determining the solution

• When Opt[k, j] is computed, record the

value of i that minimized the sum

• Store this value in an auxiliary array

• Use to reconstruct solution

Variable number of segments

• Segments not specified in advance

• Penalty function associated with segments

• Cost = Interpolation error + C x #Segments

Penalty cost measure

• Opt[j] = min(E1,j, mini(Opt[i] + Ei,j + P))

Optk[j] = min i { Optk-1[i] + Ei,j } for 0 < i < j

Optimal solution with k segments extends

an optimal solution of k-1 segments on a

smaller problem

Summary for Segmented Interpolation

Subset Sum Problem

• Let w1,…,wn = {6, 8, 9, 11, 13, 16, 18, 24}

• Find a subset that has as large a sum as

possible, without exceeding 50

Adding a variable for Weight

• Opt[j, K] the largest subset of {w1, …, wj}

that sums to at most K

• {2, 4, 7, 10}

– Opt[2, 7] =

– Opt[3, 7] =

– Opt[3,12] =

– Opt[4,12] =

Subset Sum Recurrence

• Opt[j, K] the largest subset of {w1, …, wj}

that sums to at most K

Subset Sum Grid

4

3

2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{2, 4, 7, 10}

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + wj)

Subset Sum Code

for j = 1 to n

for k = 1 to W

Opt[j, k] = max(Opt[j-1, k], Opt[j-1, k-wj] + wj)

Knapsack Problem

• Items have weights and values

• The problem is to maximize total value subject to
a bound on weght

• Items {I1, I2, … In}
– Weights {w1, w2, …,wn}

– Values {v1, v2, …, vn}

– Bound K

• Find set S of indices to:

– Maximize SieSvi such that SieSwi <= K

Knapsack Recurrence

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + wj)

Subset Sum Recurrence:

Knapsack Recurrence:

Knapsack Grid

4

3

2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + vj)

Alternate approach for Subset

Sum
• Alternate formulation of Subset Sum dynamic

programming algorithm
– Sum[i, K] = true if there is a subset of {w1,…wi} that

sums to exactly K, false otherwise

– Sum [i, K] = Sum [i -1, K] OR Sum[i - 1, K - wi]

– Sum [0, 0] = true; Sum[i, 0] = false for i != 0

• To allow for negative numbers, we need to fill in
the array between Kmin and Kmax

Run time for Subset Sum

• With n items and target sum K, the run

time is O(nK)

• If K is 1,000,000,000,000,000,000,000,000

this is very slow

• Alternate brute force algorithm: examine

all subsets: O(n2n)

