CSE 417 Algorithms

Lecture 20, Autumn 2020 Dynamic Programming

Announcements

Reading

- Dynamic Programming Examples:
 - -6.1-6.2, Weighted Interval Scheduling
 - 6.3 Segmented Least Squares
 - -6.4 Knapsack and Subset Sum
 - 6.6 String Alignment
 - 6.7* String Alignment in linear space
 - 6.8 Shortest Paths (again)
 - 6.9 Negative cost cycles
 - How to make an infinite amount of money

Dynamic Programming

- Key ideas
 - Construct optimization function
 - Express solution in terms of sub problems
 - Order sub problems to avoid recomputation
- Important detail
 - Record information to construct solution

Weighted Interval Scheduling

Opt[j] = max (Opt[j - 1], w_j + Opt[p[j]])

- Opt[j]: Maximum value solution from $I_1, I_2, ..., I_j$
- Consider solutions not containing, and containing I_i

Record which case is used in Opt computation

Notation

Points p₁, p₂, ..., p_n ordered by x-coordinate (p_i = (x_i, y_i))

• $E_{i,j}$ is the least squares error for the optimal line interpolating $p_i, \ldots p_i$

Optimal interpolation with two segments

 Give an equation for the optimal interpolation of p₁,...,p_n with two line segments

- $E_{i,j}$ is the least squares error for the optimal line interpolating $p_i, \ldots p_j$

Optimal interpolation with k segments

- Optimal segmentation with three segments
 - $-Min_{i,j} \{E_{1,i} + E_{i,j} + E_{j,n}\}$
 - $-O(n^2)$ combinations considered
- Generalization to k segments leads to considering O(n^{k-1}) combinations

 $Opt_k[j]$: Minimum error approximating $p_1...p_j$ with k segments

How do you express $Opt_k[j]$ in terms of $Opt_{k-1}[1],...,Opt_{k-1}[j]$?

Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem

Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

Determining the solution

- When Opt[k, j] is computed, record the value of i that minimized the sum
- Store this value in an auxiliary array
- Use to reconstruct solution

Variable number of segments

Segments not specified in advance

- Penalty function associated with segments
- Cost = Interpolation error + C x #Segments

Penalty cost measure

Opt[j] = min(E_{1,j}, min_i(Opt[i] + E_{i,j} + P))

Summary for Segmented Interpolation

 $Opt_{k}[j] = min_{i} \{ Opt_{k-1}[i] + E_{i,j} \} \text{ for } 0 < i < j$

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem

Subset Sum Problem

- Let $w_1, \dots, w_n = \{6, 8, 9, 11, 13, 16, 18, 24\}$
- Find a subset that has as large a sum as possible, without exceeding 50

Adding a variable for Weight

- Opt[j, K] the largest subset of {w₁, ..., w_j} that sums to at most K
- {2, 4, 7, 10}
 - Opt[2, 7] =
 - Opt[3, 7] =
 - Opt[3,12] =
 - Opt[4, 12] =

Subset Sum Recurrence

 Opt[j, K] the largest subset of {w₁, ..., w_j} that sums to at most K

Subset Sum Grid

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + w_j)

 $\{2, 4, 7, 10\}$

Subset Sum Code

```
for j = 1 to n
for k = 1 to W
Opt[j, k] = max(Opt[j-1, k], Opt[j-1, k-w<sub>i</sub>] + w<sub>i</sub>)
```

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items {I₁, I₂, ... I_n}
 - Weights $\{w_1, w_2, \dots, w_n\}$
 - Values $\{v_1, v_2, ..., v_n\}$
 - Bound K
- Find set S of indices to:

– Maximize $\sum_{i \in S} v_i$ such that $\sum_{i \in S} w_i \le K$

Knapsack Recurrence

Subset Sum Recurrence:

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_i] + w_i)

Knapsack Recurrence:

Knapsack Grid

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + v_j)

Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}

Alternate approach for Subset Sum

- Alternate formulation of Subset Sum dynamic programming algorithm
 - Sum[i, K] = true if there is a subset of $\{w_1, \dots, w_i\}$ that sums to exactly K, false otherwise
 - Sum [i, K] = Sum [i -1, K] **OR** Sum[i 1, K w_i]
 - Sum [0, 0] = true; Sum[i, 0] = false for i != 0

- To allow for negative numbers, we need to fill in the array between $K_{\textit{min}}$ and $K_{\textit{max}}$

Run time for Subset Sum

- With n items and target sum K, the run time is O(nK)
- If K is 1,000,000,000,000,000,000,000,000
 this is very slow
- Alternate brute force algorithm: examine all subsets: O(n2ⁿ)