CSE 417 Algorithms

Lecture 20, Autumn 2020
Dynamic Programming

Announcements

Reading

* Dynamic Programming Examples:
—6.1-6.2, Weighted Interval Scheduling
— 6.3 Segmented Least Squares
— 6.4 Knapsack and Subset Sum

— 6.6 String Alignment
« 6.7* String Alignment in linear space
— 6.8 Shortest Paths (again)

— 6.9 Negative cost cycles
« How to make an infinite amount of money

Dynamic Programming

« Key ideas
— Construct optimization function
— Express solution in terms of sub problems
— Order sub problems to avoid recomputation
* Important detall
— Record information to construct solution

Weighted Interval Scheduling

Opt[]] = max (Opt[j— 1], w; + Opt[p[]]])
Opt[)] : Maximum value solution from I, I, . . . |,
Consider solutions not containing, and containing |,

Record which case is used in Opt computation

16

Optimal linear interpolation

Error = 2.(y, —ax; — b)?

What is the optimal linear

Interpolation with three line segments,
O

O
O

O
O o O 0 O
O O

O

What is the optimal linear

Interpolation with two line segments _
O

O
O

O
O o O 0 O
O O

O

What is the optimal linear

Interpolation with n line segments .
O

O
O

O

O O O
. o O O
O

Notation

* Points py, P, - - ., P, Ordered by
X-coordinate (p; = (X, Y.))

* E;;Is the least squares error for the

optimal line interpolating p;, . . . p;
OO 7
O O
O O ©

Optimal interpolation with two
segments

« Give an equation for the optimal interpolation of
P1,...,.P, With two line segments

* E;;Is the least squares error for the optimal line
interpolating p;, . . . p;

Optimal interpolation with k
segments

« Optimal segmentation with three segments

- Min {E; + E; + E; .}

— O(n%) combinations considered

» Generalization to k segments leads to
considering O(n*1) combinations

Opt,[]] : Minimum error approximating
p;..-p; with k segments

How do you express Opt,[]] in terms of
Opt, 4[1],...,0pt 4[]]?

Optimal sub-solution property

Optimal solution with k segments extends o
an optimal solution of k-1 segments on a
smaller problem O
O
O
O O O
o ® O O
O
o O

Optimal multi-segment interpolation
Compute Opt[k,J]forO<k<)<n

for j =1 ton
Opt[l, Jj] = E; 5/

for k = 2 to n-1
for Jj = 2 ton
t = E; |
for 1 =1 to j-1
t = min(t, Opt[k-1, i] + Eid)
Opt[k, jJj] = t

Determining the solution

* When Optlk, |] iIs computed, record the
value of | that minimized the sum

 Store this value Iin an auxiliary array
 Use to reconstruct solution

Variable number of segments

« Segments not specified in advance
* Penalty function associated with segments
» Cost = Interpolation error + C x #Segments
. O © @0
o O O

Penalty cost measure

+ Opt[j] = min(E,;, min(Opt{i] + E;; + P))

Summary for Segmented Interpolation

Opt[)]=min;{Opt,[1]+E;}Tor0<i<]

Optimal solution with k segments extends
an optimal solution of k-1 segments on a
smaller problem

Subset Sum Problem

. Letw,,...,w, ={6, 8,9, 11, 13, 16, 18, 24}

* Find a subset that has as large a sum as
possible, without exceeding 50

Adding a variable for Weight

* Opt J, K] the largest subset of {w,, ..., w;}
that sums to at most K
« {2,4,7, 10}
—Opt[2, 7] =
—Opt[3, 7] =
— Opt[3,12] =
— Opt[4,12] =

Subset Sum Recurrence

» Opt[j, K] the largest subset of {w,, ..., w}
that sums to at most K

Subset Sum Grid

Optl J, K] = max(Opt[] — 1, K], Opt[] - 1, K—w] + w,)

R INW| P>

{2,4, 7, 10}

Subset Sum Code

forj=1ton
fork=1toW
Opt[j, k] = max(Opt[j-1, k], Opt[J-1, k-wi] + w;)

Knapsack Problem

ltems have weights and values

The problem is to maximize total value subject to
a bound on weght

ltems {l,, I, ... |}

— Weights {w, w,, ...,w}
— Values {v,, v,, ..., V. }
— Bound K

Find set S of indices to:

— Maximize Zigsvi such that Zigswi <=K

Knapsack Recurrence

Subset Sum Recurrence:

Opt[j, K = max(Opt[j— 1, K], Opt[j— 1, K—w] + w,)

Knapsack Recurrence:

Knapsack Grid

Optl J, K] = max(Opt[] — 1, K], Opt[] - 1, K—w;] + V)

R IN WP

Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}

Alternate approach for Subset
Sum

 Alternate formulation of Subset Sum dynamic
programming algorithm
— Sumli, K] = true if there is a subset of {w,,...w;} that
sums to exactly K, false otherwise
— Sum [i, K] = Sum [i -1, K] OR Sum]i - 1, K - wj]
— Sum [0, O] = true; Sumli, O] = false fori!=0

« To allow for negative numbers, we need to fill in
the array between K .. and K

min max

Run time for Subset Sum

« With n items and target sum K, the run
time is O(nK)

- IfKis 1,000,000,000,000,000,000,000,000
this Is very slow

 Alternate brute force algorithm: examine
all subsets: O(n2")

