CSE 417 Algorithms

Lecture 20, Autumn 2020
Dynamic Programming



Announcements



Reading

* Dynamic Programming Examples:
—6.1-6.2, Weighted Interval Scheduling
— 6.3 Segmented Least Squares
— 6.4 Knapsack and Subset Sum

— 6.6 String Alignment
« 6.7* String Alignment in linear space
— 6.8 Shortest Paths (again)

— 6.9 Negative cost cycles
« How to make an infinite amount of money



Dynamic Programming

« Key ideas
— Construct optimization function
— Express solution in terms of sub problems
— Order sub problems to avoid recomputation
* Important detall
— Record information to construct solution



Weighted Interval Scheduling

Opt[ ] ] = max (Opt[j— 1], w; + Opt[ p[]]])
Opt[ ) ] : Maximum value solution from I, I, . . . |,
Consider solutions not containing, and containing |,

Record which case is used in Opt computation
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Optimal linear interpolation

Error = 2.(y, —ax; — b)?



What is the optimal linear

Interpolation with three line segments,
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What is the optimal linear

Interpolation with two line segments _
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What is the optimal linear

Interpolation with n line segments .
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Notation

* Points py, P, - - ., P, Ordered by
X-coordinate (p; = (X, Y.))

* E;;Is the least squares error for the

optimal line interpolating p;, . . . p;
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Optimal interpolation with two
segments

« Give an equation for the optimal interpolation of
P1,...,.P, With two line segments

* E;;Is the least squares error for the optimal line
interpolating p;, . . . p;



Optimal interpolation with k
segments

« Optimal segmentation with three segments

- Min {E; + E; + E; .}

— O(n%) combinations considered

» Generalization to k segments leads to
considering O(n*1) combinations



Opt,[ ] ] : Minimum error approximating
p;..-p; with k segments

How do you express Opt,[ ] ] in terms of
Opt, 4[1],...,0pt 4[] ]?



Optimal sub-solution property

Optimal solution with k segments extends o
an optimal solution of k-1 segments on a
smaller problem O
O
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Optimal multi-segment interpolation
Compute Opt[ k,J]forO<k<)<n

for j =1 ton
Opt[l, Jj] = E; 5/

for k = 2 to n-1
for Jj = 2 ton
t = E; |
for 1 =1 to j-1
t = min(t, Opt[k-1, i] + Eid)
Opt[k, jJj] = t



Determining the solution

* When Optlk, |] iIs computed, record the
value of | that minimized the sum

 Store this value Iin an auxiliary array
 Use to reconstruct solution



Variable number of segments

« Segments not specified in advance
* Penalty function associated with segments
» Cost = Interpolation error + C x #Segments
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Penalty cost measure

+ Opt[j] = min(E,;, min(Opt{i] + E;; + P))



Summary for Segmented Interpolation

Opt[)]=min;{Opt,[1]+E;}Tor0<i<]

Optimal solution with k segments extends
an optimal solution of k-1 segments on a
smaller problem



Subset Sum Problem

. Letw,,...,w, ={6, 8,9, 11, 13, 16, 18, 24}

* Find a subset that has as large a sum as
possible, without exceeding 50



Adding a variable for Weight

* Opt J, K] the largest subset of {w,, ..., w;}
that sums to at most K
« {2,4,7, 10}
—Opt[2, 7] =
—Opt[3, 7] =
— Opt[3,12] =
— Opt[4,12] =




Subset Sum Recurrence

» Opt[ j, K] the largest subset of {w,, ..., w}
that sums to at most K



Subset Sum Grid

Optl J, K] = max(Opt[ ] — 1, K], Opt[] - 1, K—w] + w,)
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Subset Sum Code

forj=1ton
fork=1toW
Opt[j, k] = max(Opt[j-1, k], Opt[J-1, k-wi] + w;)



Knapsack Problem

ltems have weights and values

The problem is to maximize total value subject to
a bound on weght

ltems {l,, I, ... |}

— Weights {w, w,, ...,w}
— Values {v,, v,, ..., V. }
— Bound K

Find set S of indices to:

— Maximize Zigsvi such that Zigswi <=K



Knapsack Recurrence

Subset Sum Recurrence:

Opt[ j, K = max(Opt[ j— 1, K], Opt[j— 1, K—w] + w,)

Knapsack Recurrence:



Knapsack Grid

Optl J, K] = max(Opt[ ] — 1, K], Opt[ ] - 1, K—w;] + V)
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Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}



Alternate approach for Subset
Sum

 Alternate formulation of Subset Sum dynamic
programming algorithm
— Sumli, K] = true if there is a subset of {w,,...w;} that
sums to exactly K, false otherwise
— Sum [i, K] = Sum [i -1, K] OR Sum]i - 1, K - wj]
— Sum [0, O] = true; Sumli, O] = false fori!=0

« To allow for negative numbers, we need to fill in
the array between K .. and K

min max



Run time for Subset Sum

« With n items and target sum K, the run
time is O(nK)

- IfKis 1,000,000,000,000,000,000,000,000
this Is very slow

 Alternate brute force algorithm: examine
all subsets: O(n2")



