CSE 417 Algorithms

Lecture 19, Autumn 2020
Dynamic Programming
Announcements

• Dynamic Programming Reading:
 – 6.1-6.2, Weighted Interval Scheduling
 – 6.3 Segmented Least Squares
 – 6.4 Knapsack and Subset Sum
 – 6.6 String Alignment
 • 6.7* String Alignment in linear space
 – 6.8 Shortest Paths (again)
 – 6.9 Negative cost cycles
 • How to make an infinite amount of money
Dynamic Programming

• The most important algorithmic technique covered in CSE 417

• Key ideas
 – Express solution in terms of a polynomial number of sub problems
 – Order sub problems to avoid recomputation
Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals I_1, \ldots, I_n with weights w_1, \ldots, w_n, choose a maximum weight set of non-overlapping intervals

Intervals sorted by end time
Optimality Condition

- \(\text{Opt}[j] \) is the maximum weight independent set of intervals \(I_1, I_2, \ldots, I_j \)
- \(\text{Opt}[j] = \max(\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \)
 - Where \(p[j] \) is the index of the last interval which finishes before \(I_j \) starts
Algorithm

MaxValue(j) =
 if j = 0 return 0
 else
 return max(MaxValue(j-1),
 w_j + MaxValue(p[j]))

Worst case run time: \(2^n\)
A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =
 if j = 0 return 0;
 else if M[j] !== -1 return M[j];
 else
 M[j] = max(MaxValue(j-1), w_j + MaxValue(p[j]));
 return M[j];
Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

MaxValue {

}
Fill in the array with the Opt values

Opt\[j \] = max (Opt\[j – 1 \], w_j + Opt\[p\[j \] \])

<table>
<thead>
<tr>
<th>i</th>
<th>P[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
Computing the solution

\[\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]

Record which case is used in Opt computation

```
2
4
7
4
6
7
6
```
Iterative Algorithm

```java
int[] M = new int[n+1];
char[] R = new char[n+1];

M[0] = 0;
for (int j = 1; j < n+1; j++){
    v1 = M[j-1];
    v2 = W[j] + M[P[j]];
    if (v1 > v2) {
        M[j] = v1;
        R[j] = 'A';
    } else {
        M[j] = v2;
        R[j] = 'B';
    }
}
```
Optimal linear interpolation

Error = \sum(y_i - ax_i - b)^2
What is the optimal linear interpolation with three line segments?
What is the optimal linear interpolation with two line segments
What is the optimal linear interpolation with n line segments
Notation

• Points p_1, p_2, \ldots, p_n ordered by x-coordinate ($p_i = (x_i, y_i)$)

• $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j
Optimal interpolation with two segments

• Give an equation for the optimal interpolation of p_1, \ldots, p_n with two line segments

• $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j
Optimal interpolation with k segments

• Optimal segmentation with three segments
 – $\min_{i,j}\{E_{1,i} + E_{i,j} + E_{j,n}\}$
 – $O(n^2)$ combinations considered

• Generalization to k segments leads to considering $O(n^{k-1})$ combinations
Opt\textsubscript{k}[j] : Minimum error approximating \(p_1 \ldots p_j \) with \(k \) segments

How do you express \(\text{Opt}_{k}[j] \) in terms of \(\text{Opt}_{k-1}[1], \ldots, \text{Opt}_{k-1}[j] \)?
Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem.
Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

for j = 1 to n
 Opt[1, j] = E_{1,j};

for k = 2 to n-1
 for j = 2 to n
 t = E_{1,j}
 for i = 1 to j-1
 t = min(t, Opt[k-1, i] + E_{i,j})
 Opt[k, j] = t
Determining the solution

• When Opt[k,j] is computed, record the value of i that minimized the sum
• Store this value in an auxiliary array
• Use to reconstruct solution
Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x #Segments
Penalty cost measure

• $\text{Opt}[j] = \min(E_{1,j}, \min_i(\text{Opt}[i] + E_{i,j} + P))$