CSE 417 Algorithms and Complexity

Autumn 2020 Lecture 18 Divide and Conquer Algorithms

Announcements

Homework 6, Due Wednesday, Nov 18

 No class Wednesday, Nov 11

Divide and Conquer Algorithms

- Mergesort, Quicksort
- Strassen's Algorithm
- Median
- Inversion counting
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba's Algorithm)

Select the k-th largest from an array

- Selection, given n numbers and an integer k, find the k-th largest
- Median is a special case
- The standard approach is to use a quicksort like algorithm
 - But with one recursive problem
- The difficulty is ensuring a good split

 Worst case O(n²) time

What to know about median finding The key to the algorithm is pivot selection Choosing a random pivot works well Improved random pivot selection: median of three Randomized algorithms can find median with 3/2

- Randomized algorithms can find median with 3/2 n comparisons
- Deterministic median finding is harder
 BFPRT Algorithm guarantees a 3n/4-n/4 split

- Suppose the minimum separation from the sub problems is $\boldsymbol{\delta}$
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

Algorithm run time

After preprocessing:
 T(n) = cn + 2 T(n/2)

Fast Integer Multiplication

- Grade School O(n²)
- Karatsuba O(n^{1.58})
- Toom-Cook O(n^{1.46}) [For 3 pieces]
 O(n^{1+eps}) [For k pieces]
- Schonhage-Strassen
 - Fast Fourier Transform based algorithm
 - O(n log n loglog n)
 - Becomes practical for ~25,000 digits

No class Wednesday

• Dynamic Programming starting on Friday