CSE 417
Algorithms and Complexity
Autumn 2020
Lecture 18
Divide and Conquer Algorithms

Divide and Conquer Algorithms

- Mergesort, Quicksort
- Strassen's Algorithm
- Median
- Inversion counting
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba's Algorithm)

Select(A, k) \{ Choose a pivot element x from A $\begin{aligned} & S_{1}=\{y \text { in } A \mid y<x\} \\ & S_{2}=\{y \text { in } A \mid y>x\} \\ & S_{3}=\{y \text { in } A \mid y=x\} \\ & \text { if }\left(\left\|S_{2}\right\|>=k\right) \end{aligned}$ return $\operatorname{Select}\left(\mathrm{S}_{2}, \mathrm{k}\right)$ else if ($\left\|S_{2}\right\|+\left\|S_{3}\right\|>=k$) return x else return Select($\left.\mathrm{S}_{1}, \mathrm{k}-\left\|\mathrm{S}_{2}\right\|-\left\|\mathrm{S}_{3}\right\|\right)$		
S_{1}	S_{3}	S_{2}

What to know about median finding

- The key to the algorithm is pivot selection
- Choosing a random pivot works well
- Improved random pivot selection: median of three
- Randomized algorithms can find median with $3 / 2$ n comparisons
- Deterministic median finding is harder - BFPRT Algorithm guarantees a $3 n / 4-n / 4$ split

Select the k-th largest from an array

- Selection, given n numbers and an integer k , find the k-th largest
- Median is a special case
- The standard approach is to use a quicksort like algorithm
- But with one recursive problem
- The difficulty is ensuring a good split
- Worst case $O\left(\mathrm{n}^{2}\right)$ time

Closest Pair Problem (2D)

- Given a set of points find the pair of points p, q that minimizes $\operatorname{dist}(\mathrm{p}, \mathrm{q})$

Packing Lemma
Suppose that the minimum distance between points is at least δ, what is the maximum number of points that can be packed in a ball of radius δ ?

Combining Solutions

- Suppose the minimum separation from the sub problems is δ
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

Divide and conquer

- If we solve the problem on two subsets, does it help? (Separate by median x coordinate)

Details

- Preprocessing: sort points by y
- Merge step
- Select points in boundary zone
- For each point in the boundary
- Find highest point on the other side that is at most δ above
- Find lowest point on the other side that is at most δ below
- Compare with the points in this interval (there are at most 6)

Algorithm run time

- After preprocessing:
$-T(n)=c n+2 T(n / 2)$

Recursive Multiplication Algorithm (First attempt)
$x=x_{1} 2^{n / 2}+x_{0}$
$y=y_{1} 2^{n / 2}+y_{0}$
$x y=\left(x_{1} 2^{n / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right)$
$=x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}$

Recurrence:
Run time:
Simple algebra
$x=x_{1} 2^{n / 2}+x_{0}$
$y=y_{1} 2^{n / 2}+y_{0}$
$x y=x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}$
$p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)=x_{1} y_{1}+x_{1} y_{0}+x_{0} y_{1}+x_{0} y_{0}$

Karatsuba's Algorithm

Multiply n-digit integers x and y

$$
\begin{aligned}
& \text { Let } x=x_{1} 2^{n / 2}+x_{0} \text { and } y=y_{1} 2^{n / 2}+y_{0} \\
& \text { Recursively compute } \\
& a=x_{1} y_{1} \\
& b=x_{0} y_{0} \\
& p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) \\
& \text { Return } a 2^{n}+(p-a-b) 2^{n / 2}+b
\end{aligned} ~\left\{\begin{array}{l}
\text { Recurrence: } T(n)=3 T(n / 2)+c n
\end{array}\right.
$$

$\log _{2} 3=1.58496250073 \ldots$

Fast Integer Multiplication

- Grade School O(n^{2})
- Karatsuba O($\left.\mathrm{n}^{1.58}\right)$
- Toom-Cook O($\left.\mathrm{n}^{1.46}\right)$ [For 3 pieces] $-\mathrm{O}\left(\mathrm{n}^{1+e p s}\right)$ [For k pieces]
- Schonhage-Strassen
- Fast Fourier Transform based algorithm
- O($\mathrm{n} \log \mathrm{n} \log \log \mathrm{n}$)
- Becomes practical for $\sim 25,000$ digits

No class Wednesday

- Dynamic Programming starting on Friday

