CSE 417 Algorithms and Complexity

Autumn 2020 Lecture 17 Divide and Conquer Algorithms

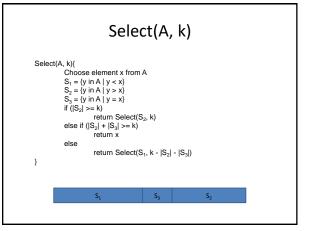
Announcements

- Homework 5, Due Friday

 But will be accepted without penalty through Monday
- Homework 6, Due Wednesday, Nov 18

 No class Wednesday, Nov 11

Wednesday Results


- Strassen's Algorithm for Matrix Multiplication
 - Recursive, $T(n) = 7 T(n/2) + cn^2$
 - Runtime: $O(7^{\log n})=O(n^{\log 7})$ which is about $O(n^{2.807})$
- Counting Inversions
 - Divide and conquer algorithm based on merge sort
 - O(n log n)

Computing the Median

- Given n numbers, find the number of rank n/2
- One approach is sorting
 - Sort the elements, and choose the middle oneCan you do better?

Problem generalization

• *Selection*, given n numbers and an integer k, find the k-th largest

Randomized Selection

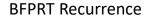
- Choose the element at random
- Analysis can show that the algorithm has expected run time O(n)

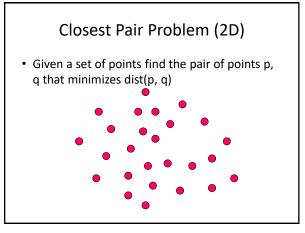
Deterministic Selection

• What is the run time of select if we can guarantee that choose finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$ in O(n) time

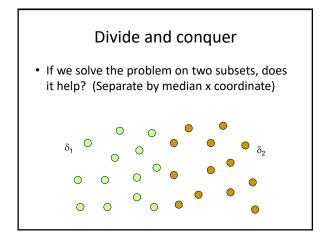
BFPRT Algorithm

• A very clever choose algorithm . . .


Split into n/5 sets of size 5 M be the set of medians of these sets Let x be the median of M

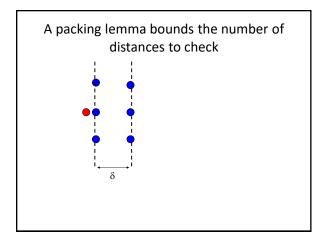

BFPRT runtime

 $|S_1| < 3n/4, |S_2| < 3n/4$


Split into n/5 sets of size 5 M be the set of medians of these sets x be the median of M Construct S_1 and S_2 Recursive call in S_1 or S_2

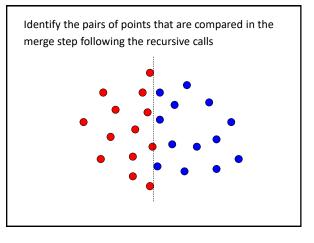
• T(n) <= T(3n/4) + T(n/5) + c n

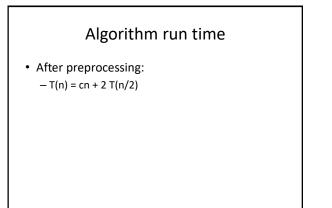
Prove that T(n) <= 20 c n



Packing Lemma

Suppose that the minimum distance between points is at least δ , what is the maximum number of points that can be packed in a ball of radius δ ?


Combining Solutions


- Suppose the minimum separation from the sub problems is $\boldsymbol{\delta}$
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

Details

- Preprocessing: sort points by y
- Merge step
 - Select points in boundary zone
 - For each point in the boundary
 - + Find highest point on the other side that is at most $\boldsymbol{\delta}$ above
 - Find lowest point on the other side that is at most δ below
 - Compare with the points in this interval (there are at most 6)

Recursive Multiplication Algorithm (First attempt) $x = x_1 2^{n/2} + x_0$ $y = y_1 2^{n/2} + y_0$ $xy = (x_1 2^{n/2} + x_0) (y_1 2^{n/2} + y_0)$ $= x_1y_1 2^n + (x_1y_0 + x_0y_1)2^{n/2} + x_0y_0$ Recurrence: Run time:

Simple algebra

$$\begin{split} &x = x_1 \, 2^{n/2} + x_0 \\ &y = y_1 \, 2^{n/2} + y_0 \\ &xy = x_1 y_1 \, 2^n + (x_1 y_0 + x_0 y_1) \, 2^{n/2} + x_0 y_0 \end{split}$$

 $p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$

