CSE 417

Algorithms and Complexity

Autumn 2020
Lecture 17
Divide and Conquer Algorithms

Announcements

- Homework 5, Due Friday
- But will be accepted without penalty through Monday
- Homework 6, Due Wednesday, Nov 18
- No class Wednesday, Nov 11

Wednesday Results

- Strassen's Algorithm for Matrix Multiplication
- Recursive, $T(n)=7 T(n / 2)+c n^{2}$
- Runtime: $\mathrm{O}\left(7^{\log n}\right)=O\left(n^{\log 7}\right)$ which is about $\mathrm{O}\left(\mathrm{n}^{2.807}\right)$
- Counting Inversions
- Divide and conquer algorithm based on merge sort
- O(n log n)

Computing the Median

- Given n numbers, find the number of rank $n / 2$
- One approach is sorting
- Sort the elements, and choose the middle one
- Can you do better?

Problem generalization

- Selection, given n numbers and an integer k, find the k-th largest

Select(A, k)

Select(A, k)
Choose element x from A
$S_{1}=\{y$ in $A \mid y<x\}$
$\mathrm{S}_{2}=\{y$ in $A \mid y>x\}$
$\mathrm{S}_{3}=\{y$ in $A \mid y=x\}$
if ($\left|S_{2}\right|>=k$)
return Select $\left(\mathrm{S}_{2}, \mathrm{k}\right)$
else if $\left(\left|S_{2}\right|+\left|S_{3}\right|>=k\right)$ return x
else

$$
\text { return Select }\left(\mathrm{S}_{1}, \mathrm{k}-\left|\mathrm{S}_{2}\right|-\left|\mathrm{S}_{3}\right|\right)
$$

\}
S_{1}

Randomized Selection

- Choose the element at random
- Analysis can show that the algorithm has expected run time $O(n)$

Deterministic Selection

- What is the run time of select if we can guarantee that choose finds an x such that $\left|S_{1}\right|<3 n / 4$ and $\left|S_{2}\right|<3 n / 4$ in $O(n)$ time

BFPRT Algorithm

- A very clever choose algorithm . . .

Split into $\mathrm{n} / 5$ sets of size 5
M be the set of medians of these sets Let x be the median of M

BFPRT runtime

$\left|S_{1}\right|<3 n / 4,\left|S_{2}\right|<3 n / 4$

Split into $\mathrm{n} / 5$ sets of size 5 M be the set of medians of these sets
x be the median of M
Construct S_{1} and S_{2}
Recursive call in S_{1} or S_{2}

BFPRT Recurrence

- $T(n)<=T(3 n / 4)+T(n / 5)+c n$

Prove that $T(n)<=20 \mathrm{cn}$

Closest Pair Problem (2D)

- Given a set of points find the pair of points p, q that minimizes $\operatorname{dist}(p, q)$

Divide and conquer

- If we solve the problem on two subsets, does it help? (Separate by median x coordinate)

Packing Lemma

Suppose that the minimum distance between points is at least δ, what is the maximum number of points that can be packed in a ball of radius δ ?

Combining Solutions

- Suppose the minimum separation from the sub problems is δ
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

A packing lemma bounds the number of distances to check

Details

- Preprocessing: sort points by y
- Merge step
- Select points in boundary zone
- For each point in the boundary
- Find highest point on the other side that is at most δ above
- Find lowest point on the other side that is at most δ below
- Compare with the points in this interval (there are at most 6)

Identify the pairs of points that are compared in the merge step following the recursive calls

Algorithm run time

- After preprocessing:
$-T(n)=c n+2 T(n / 2)$

Integer Arithmetic

9715480283945084383094856701043643845790217965702956767 + 1242431098234099057329075097179898430928779579277597977

Runtime for standard algorithm to add two n digit numbers:

2095067093034680994318596846868779409766717133476767930 X 5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to multiply two n digit numbers:

Recursive Multiplication Algorithm (First attempt)

$$
\begin{aligned}
x & =x_{1} 2^{n / 2}+x_{0} \\
y & =y_{1} 2^{n / 2}+y_{0} \\
x y & =\left(x_{1} 2^{n / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right) \\
& =x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right)^{n / 2}+x_{0} y_{0}
\end{aligned}
$$

Recurrence:
Run time:

Simple algebra

$$
\begin{aligned}
& x=x_{1} 2^{n / 2}+x_{0} \\
& y=y_{1} 2^{n / 2}+y_{0} \\
& x y=x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0} \\
& p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)=x_{1} y_{1}+x_{1} y_{0}+x_{0} y_{1}+x_{0} y_{0}
\end{aligned}
$$

Karatsuba’s Algorithm

Multiply n-digit integers x and y

$$
\text { Let } x=x_{1} 2^{n / 2}+x_{0} \text { and } y=y_{1} 2^{n / 2}+y_{0}
$$ Recursively compute

$$
\begin{aligned}
& a=x_{1} y_{1} \\
& b=x_{0} y_{0} \\
& p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) \\
& \text { Return } a 2^{n}+(p-a-b) 2^{n / 2}+b
\end{aligned}
$$

Recurrence: $T(n)=3 T(n / 2)+c n$

