CSE 417

Algorithms and Complexity

Autumn 2020
Lecture 16
Divide and Conquer Algorithms

Announcements

- Homework 5, Due Friday

Matrix Multiplication

- N X N Matrix, A B = C

```
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++) {
        int t = 0;
        for (int k = 0; k < n; k++)
                        t = t + A[i][k] * B[k][j];
    C[i][j] = t;
    }
```


Recursive Matrix Multiplication

Multiply 2×2 Matrices:
$\begin{array}{ll}\mid r & s \\ \mid t & u\end{array}|=| \begin{array}{lll}\mid a & b \mid & \mid e \\ |c| & g \\ |c| & d \mid & \mid f\end{array}$
$r=a e+b f$
$s=a g+b h$
$\mathrm{t}=\mathrm{ce}+\mathrm{df}$
$u=c g+d h$

A $N \times N$ matrix can be viewed as
a 2×2 matrix with entries that are (N/2) $\times(\mathrm{N} / 2)$ matrices.

The recursive matrix
multiplication algorithm recursively multiplies the ($\mathrm{N} / 2$) $\times(\mathrm{N} / 2)$ matrices and combines them using the equations for multiplying 2×2 matrices

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:

Strassen's Algorithm

$$
\begin{aligned}
& \begin{array}{ll}
\mid r & s \\
\mid t & u
\end{array}\left|=\left|\begin{array}{llll}
a & b & \mid e & g \\
\mid c & d
\end{array}\right|\right. \\
& r=p_{1}+p_{2}-p_{4}+p_{6} \\
& \mathrm{~s}=\mathrm{p}_{4}+\mathrm{p}_{5} \\
& \mathrm{t}=\mathrm{p}_{6}+\mathrm{p}_{7} \\
& \mathrm{u}=\mathrm{p}_{2}-\mathrm{p}_{3}+\mathrm{p}_{5}-\mathrm{p}_{7} \\
& \begin{array}{l}
p_{1}=(b-d)(f+h) \\
p_{2}=(a+d)(e+h)
\end{array} \\
& p_{3}=(a-c)(e+g) \\
& p_{4}=(a+b) h \\
& \mathrm{p}_{5}=\mathrm{a}(\mathrm{~g}-\mathrm{h}) \\
& p_{6}=d(f-e) \\
& p_{7}=(c+d) e
\end{aligned}
$$

Where:

Recurrence for Strassen's Algorithms

- $T(n)=7 T(n / 2)+c n^{2}$
- What is the runtime?

Strassen's Algorithms

- Treat $\mathrm{n} \times \mathrm{n}$ matrices as 2×2 matrices of $\mathrm{n} / 2 \times \mathrm{n} / 2$ submatrices
- Use Strassen's trick to multiply 2×2 matrices with 7 multiplies
- Base case standard multiplication for single entries
- Recurrence: $T(n)=7 T(n / 2)+c n^{2}$
- Solution is $O\left(7^{\log n}\right)=O\left(n^{\log 7}\right)$ which is about $O\left(n^{2.807}\right)$

Strassen's Algorithms

- Treat $\mathrm{n} \times \mathrm{n}$ matrices as 2×2 matrices of $\mathrm{n} / 2 \times \mathrm{n} / 2$ submatrices
- Use Strassen's trick to multiply 2×2 matrices with 7 multiplies
- Base case standard multiplication for single entries
- Recurrence: $T(n)=7 T(n / 2)+c n^{2}$
- Solution is $O\left(7^{\log n}\right)=O\left(n^{\log 7}\right)$ which is about $O\left(n^{2.807}\right)$

Inversion Problem

- Let $a_{1}, \ldots a_{n}$ be a permutation of $1 \ldots n$
- $\left(a_{i}, a_{j}\right)$ is an inversion if $i<j$ and $a_{i}>a_{j}$

$$
4,6,1,7,3,2,5
$$

- Problem: given a permutation, count the number of inversions
- This can be done easily in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
- Can we do better?

Application

- Counting inversions can be use to measure how close ranked preferences are
- People rank 20 movies, based on their rankings you cluster people who like that same type of movie

Counting Inversions

11	12	4	1	7	2	3	15	9	5	16	8	6	13	10	14

Count inversions on lower half
Count inversions on upper half
Count the inversions between the halves

Count the Inversions

Problem - how do we count inversions between sub problems in $\mathrm{O}(\mathrm{n})$ time?

- Solution - Count inversions while merging

| 1 | 2 | 3 | 4 | 7 | 11 | 12 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 5 | 6 | 8 | 9 | 10 | 13 | 14 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\square

Standard merge algorithm - add to inversion count when an element is moved from the upper array to the solution

Use the merge algorithm to count inversions

1	4	11	12

5	8	9	16

6	10	13	14

Indicate the number of inversions for each element detected when merging

Inversions

- Counting inversions between two sorted lists
- O(1) per element to count inversions

- Algorithm summary
- Satisfies the "Standard recurrence"
$-T(n)=2 T(n / 2)+c n$

Computing the Median

- Given n numbers, find the number of rank $n / 2$
- One approach is sorting
- Sort the elements, and choose the middle one
- Can you do better?

Problem generalization

- Selection, given n numbers and an integer k, find the k-th largest

Select(A, k)

Select(A, k)
Choose element x from A
$S_{1}=\{y$ in $A \mid y<x\}$
$\mathrm{S}_{2}=\{y$ in $A \mid y>x\}$
$\mathrm{S}_{3}=\{y$ in $A \mid y=x\}$
if ($\left|S_{2}\right|>=k$)
return Select $\left(\mathrm{S}_{2}, \mathrm{k}\right)$
else if $\left(\left|S_{2}\right|+\left|S_{3}\right|>=k\right)$ return x
else

$$
\text { return Select }\left(\mathrm{S}_{1}, \mathrm{k}-\left|\mathrm{S}_{2}\right|-\left|\mathrm{S}_{3}\right|\right)
$$

\}
S_{1}

Randomized Selection

- Choose the element at random
- Analysis can show that the algorithm has expected run time $O(n)$

Deterministic Selection

- What is the run time of select if we can guarantee that choose finds an x such that $\left|S_{1}\right|<3 n / 4$ and $\left|S_{2}\right|<3 n / 4$ in $O(n)$ time

BFPRT Algorithm

- A very clever choose algorithm . . .

Split into $\mathrm{n} / 5$ sets of size 5
M be the set of medians of these sets Let x be the median of M

BFPRT runtime

$\left|S_{1}\right|<3 n / 4,\left|S_{2}\right|<3 n / 4$

Split into $\mathrm{n} / 5$ sets of size 5 M be the set of medians of these sets
x be the median of M
Construct S_{1} and S_{2}
Recursive call in S_{1} or S_{2}

BFPRT Recurrence

- $T(n)<=T(3 n / 4)+T(n / 5)+c n$

Prove that $T(n)<=20 \mathrm{cn}$

