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Divide and Conquer Algorithms



Announcements

• Homework 5,  Due Friday



Matrix Multiplication

• N X N Matrix,   A B = C

for (int i = 0; i < n; i++)

for (int j = 0;  j < n; j++) {

int t = 0;

for (int k = 0; k < n; k++)

t = t + A[i][k] * B[k][j];

C[i][j] = t;

}



Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

| r    s |    | a    b|   |e    g|

| t    u |    | c    d|   | f    h|

r  = ae + bf

s  = ag + bh

t  =  ce + df

u = cg + dh

A N x N matrix can be viewed as 

a 2 x 2 matrix with entries that 

are (N/2) x (N/2) matrices. 

The recursive matrix 

multiplication algorithm 

recursively multiplies the       

(N/2) x (N/2) matrices and 

combines them using the 

equations for multiplying 2 x 2 

matrices

=



Recursive Matrix Multiplication

• How many recursive calls are 
made at each level?

• How much work in 
combining the results?

• What is the recurrence?



What is the run time for the recursive Matrix 
Multiplication Algorithm?

• Recurrence:



Strassen’s Algorithm

Multiply 2 x 2 Matrices:

| r    s |    | a    b|   |e    g|

| t     u|    | c    d|   | f    h|
=

r = p1 + p2 – p4 + p6

s = p4 + p5

t = p6 + p7

u = p2 - p3 + p5 - p7

Where:

p1 = (b – d)(f + h)

p2= (a + d)(e + h)

p3= (a – c)(e + g)

p4= (a + b)h

p5= a(g – h)

p6= d(f – e)

p7= (c + d)e

From Aho, Hopcroft, Ullman 1974



Recurrence for Strassen’s Algorithms

• T(n) = 7 T(n/2) + cn2

• What is the runtime?

log2 7 = 2.8073549221



Strassen’s Algorithms

• Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 
submatrices

• Use Strassen’s trick to multiply 2 x 2 matrices with 7 
multiplies

• Base case standard multiplication for single entries

• Recurrence:  T(n) = 7 T(n/2) + cn2

• Solution is O(7log n)= O(nlog 7) which is about O(n2.807)



Strassen’s Algorithms

• Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 
submatrices

• Use Strassen’s trick to multiply 2 x 2 matrices with 7 
multiplies

• Base case standard multiplication for single entries

• Recurrence:  T(n) = 7 T(n/2) + cn2

• Solution is O(7log n)= O(nlog 7) which is about O(n2.807)



Inversion Problem

• Let a1, . . . an be a permutation of 1 . . n

• (ai, aj) is an inversion if i < j and ai > aj

• Problem: given a permutation, count the number of 
inversions

• This can be done easily in O(n2) time

– Can we do better?

4, 6, 1, 7, 3, 2, 5



Application

• Counting inversions can be use to measure 
how close ranked preferences are

– People rank 20 movies, based on their rankings 
you cluster people who like that same type of 
movie



Counting Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves



11 12 4 1 7 2 3 15

11 12 4 1 7 2 3 15

9 5 16 8 6 13 10 14

9 5 16 8 6 13 10 14

Count the Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

5 12 3

15 10

19

8 6

44



Problem – how do we count inversions between 
sub problems in O(n) time?

• Solution – Count inversions while merging

1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16

Standard merge algorithm – add to inversion count 

when an element is moved from the upper array to the 

solution



Use the merge algorithm to count 
inversions

1 4 11 12 2 3 7 15

5 8 9 16 6 10 13 14

Indicate the number of inversions for each

element detected when merging



Inversions

• Counting inversions between two sorted lists
– O(1) per element to count inversions

• Algorithm summary
– Satisfies the “Standard recurrence” 

– T(n) = 2 T(n/2) + cn

x x x x x x x x y y y y y y y y

z z z z z z z z z z z z z z z z



Computing the Median

• Given n numbers, find the number of rank n/2

• One approach is sorting

– Sort the elements, and choose the middle one

– Can you do better?



Problem generalization

• Selection, given n numbers and an integer k, 
find the k-th largest



Select(A, k)

Select(A, k){

Choose element x from A

S1 = {y in A | y < x}

S2 = {y in A | y > x}

S3 = {y in A | y = x}

if (|S2| >= k)

return Select(S2, k)

else if (|S2| + |S3| >= k)

return x

else

return Select(S1, k - |S2| - |S3|)

}

S1 S3 S2



Randomized Selection

• Choose the element at random

• Analysis can show that the algorithm has 
expected run time O(n)



Deterministic Selection

• What is the run time of select if we can 
guarantee that choose finds an x such that 
|S1| < 3n/4 and |S2| < 3n/4 in O(n) time



BFPRT Algorithm

• A very clever choose algorithm . . . 

Split into n/5 sets of size 5

M be the set of medians of these sets

Let x be the median of M

1978

19951986

2002

http://en.wikipedia.org/wiki/File:VaughanPratt.JPG


BFPRT runtime

|S1| < 3n/4, |S2| < 3n/4

Split into n/5 sets of size 5

M be the set of medians of these sets

x be the median of M

Construct S1 and S2

Recursive call in S1 or S2



BFPRT Recurrence

• T(n) <= T(3n/4) + T(n/5) + c n

Prove that T(n) <= 20 c n


