CSE 417 Algorithms and Complexity

Autumn 2020 Lecture 16 Divide and Conquer Algorithms

Announcements

• Homework 5, Due Friday

Matrix Multiplication

• N X N Matrix, A B = C

```
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
    int t = 0;
    for (int k = 0; k < n; k++)
        t = t + A[i][k] * B[k][j];
    C[i][j] = t;
}</pre>
```

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices: |r s| = |a b| |e g||t u| = |c d| |f h|

$$r = ae + bf$$

$$s = ag + bh$$

$$t = ce + df$$

$$u = cg + dh$$

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are $(N/2) \times (N/2)$ matrices.

The recursive matrix multiplication algorithm recursively multiplies the $(N/2) \times (N/2)$ matrices and combines them using the equations for multiplying 2 x 2 matrices

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:

Strassen's Algorithm

Multiply 2 x 2 Matrices: $\begin{vmatrix} r & s \end{vmatrix} = \begin{vmatrix} a & b \end{vmatrix} \begin{vmatrix} e & g \end{vmatrix}$ $\begin{vmatrix} t & u \end{vmatrix} = \begin{vmatrix} c & d \end{vmatrix} \begin{vmatrix} f & h \end{vmatrix}$

- $r = p_1 + p_2 p_4 + p_6$
- $s = p_4 + p_5$
- $t = p_6 + p_7$
- $u = p_2 p_3 + p_5 p_7$

Where:

 $p_1 = (b - d)(f + h)$ $p_2 = (a + d)(e + h)$ $p_3 = (a - c)(e + g)$ $p_{4} = (a + b)h$ $p_5 = a(g - h)$ $p_6 = d(f - e)$ $p_7 = (c + d)e$

From Aho, Hopcroft, Ullman 1974

Recurrence for Strassen's Algorithms

- $T(n) = 7 T(n/2) + cn^2$
- What is the runtime?

Strassen's Algorithms

- Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 submatrices
- Use Strassen's trick to multiply 2 x 2 matrices with 7 multiplies
- Base case standard multiplication for single entries
- Recurrence: $T(n) = 7 T(n/2) + cn^2$
- Solution is $O(7^{\log n}) = O(n^{\log 7})$ which is about $O(n^{2.807})$

Strassen's Algorithms

- Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 submatrices
- Use Strassen's trick to multiply 2 x 2 matrices with 7 multiplies
- Base case standard multiplication for single entries
- Recurrence: $T(n) = 7 T(n/2) + cn^2$
- Solution is $O(7^{\log n}) = O(n^{\log 7})$ which is about $O(n^{2.807})$

Inversion Problem

- Let $a_1, \ldots a_n$ be a permutation of $1 \ldots n$
- (a_i, a_j) is an inversion if i < j and $a_i > a_j$

4, 6, 1, 7, 3, 2, 5

- Problem: given a permutation, count the number of inversions
- This can be done easily in O(n²) time
 - Can we do better?

Application

- Counting inversions can be use to measure how close ranked preferences are
 - People rank 20 movies, based on their rankings you cluster people who like that same type of movie

Counting Inversions

11 1	12 4	1	7	2	3	15	9	5	16	8	6	13	10	14
------	------	---	---	---	---	----	---	---	----	---	---	----	----	----

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves

Count the Inversions

Problem – how do we count inversions between sub problems in O(n) time?

• Solution – Count inversions while merging

Standard merge algorithm – add to inversion count when an element is moved from the upper array to the solution

Use the merge algorithm to count inversions

Indicate the number of inversions for each element detected when merging

Inversions

Counting inversions between two sorted lists

- Algorithm summary
 - Satisfies the "Standard recurrence"
 - T(n) = 2 T(n/2) + cn

Computing the Median

- Given n numbers, find the number of rank n/2
- One approach is sorting
 - Sort the elements, and choose the middle one
 - Can you do better?

Problem generalization

• *Selection,* given n numbers and an integer k, find the k-th largest

Select(A, k)

```
Select(A, k){

Choose element x from A

S_1 = \{y \text{ in } A \mid y < x\}

S_2 = \{y \text{ in } A \mid y > x\}

S_3 = \{y \text{ in } A \mid y = x\}

if (|S_2| \ge k)

return Select(S<sub>2</sub>, k)

else if (|S_2| + |S_3| \ge k)

return x

else

return Select(S<sub>1</sub>, k - |S<sub>2</sub>| - |S<sub>3</sub>|)

}
```


Randomized Selection

- Choose the element at random
- Analysis can show that the algorithm has expected run time O(n)

Deterministic Selection

What is the run time of select if we can guarantee that choose finds an x such that |S₁| < 3n/4 and |S₂| < 3n/4 in O(n) time

BFPRT Algorithm

- 1986
- A very clever choose algorithm . . .

Split into n/5 sets of size 5 M be the set of medians of these sets Let x be the median of M

BFPRT runtime

 $|S_1| < 3n/4, |S_2| < 3n/4$

Split into n/5 sets of size 5 M be the set of medians of these sets x be the median of M Construct S_1 and S_2 Recursive call in S_1 or S_2

BFPRT Recurrence

• $T(n) \le T(3n/4) + T(n/5) + c n$

Prove that $T(n) \le 20 c n$