CSE 417
Algorithms and Complexity

Autumn 2020
Lecture 16
Divide and Conquer Algorithms

Announcements

* Homework 5, Due Friday

Matrix Multiplication

* NXN Matrix, AB=C

for (int 1 = 0; i < n; 1i++)
for (int j = 0; Jj < n; j++) {
int t = 0;
for (int k = 0; k < n; k++)
t =t + A[1][k] * B[k][]J]’

Cli][3] = &;

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

lr s|_la bl e g
|t u| |c d| |f hi
r =ae + bf
S =ag + bh
t = ce+df
u= cg+dh

A N x N matrix can be viewed as
a 2 X 2 matrix with entries that
are (N/2) x (N/2) matrices.

The recursive matrix
multiplication algorithm
recursively multiplies the
(N/2) x (N/2) matrices and
combines them using the
equations for multiplying 2 x 2
matrices

Recursive Matrix Multiplication

How many recursive calls are
made at each level?

How much work in
combining the results?

What is the recurrence?

What is the run time for the recursive Matrix
Multiplication Algorithm?

* Recurrence:

Strassen’s Algorithm

Where:

Multiply 2 x 2 Matrices:
p, = (b—d)(f+h)

lr s|_la bl e g

|t ul |c d |f N p,= (a + d)(e + h)
ps=(a—c)(e + Q)

=Pyt P2—Ps* Pg p,= (a + b)h

S=Ps*Ps ps=a(g - h)

t=ps+ Py ps=d(f—e)

U=pP;-P3*tPs-P7 p-=(c +d)e

From Aho, Hopcroft, Ullman 1974

Recurrence for Strassen’s Algorithms

* T(n)=7T(n/2) + cn?
e What is the runtime?

Strassen’s Algorithms

Treat n x n matrices as 2 x 2 matrices of n/2 x n/2
submatrices

Use Strassen’s trick to multiply 2 x 2 matrices with 7
multiplies

Base case standard multiplication for single entries
Recurrence: T(n) =7 T(n/2) + cn?
Solution is O(7'°¢")= O(n'°8 /) which is about O(n2:8%7)

Strassen’s Algorithms

Treat n x n matrices as 2 x 2 matrices of n/2 x n/2
submatrices

Use Strassen’s trick to multiply 2 x 2 matrices with 7
multiplies

Base case standard multiplication for single entries
Recurrence: T(n) =7 T(n/2) + cn?
Solution is O(7'°¢")= O(n'°8 /) which is about O(n2:8%7)

Inversion Problem

Leta,,...a,beapermutationofl..n
(3, 3;) is aninversion if i <jand a; > 3,

4,6,1,7,3,2,5

Problem: given a permutation, count the number of
Inversions

This can be done easily in O(n?) time

— Can we do better?

Application

* Counting inversions can be use to measure
how close ranked preferences are
— People rank 20 movies, based on their rankings

you cluster people who like that same type of
movie

Counting Inversions

11

12

-

2

3

15

9

5

16

8

6

13

10

14

Count Inversions on lower half

Count inversions on upper half

Count the inversions between the halves

Count the Inversions

: o o
11 (12 |4 4 15 5 |16 6 13110 |14
o) ©)

11 |12 |4 ! 15 9 |5 (16 6 |13 (10|14
)

44 @
11 |12 1 15|19 |5 |16 |8 |6 |13 |10 |14

Problem — how do we count inversions between

* Solution — Count inversions while merging

sub problems in O(n) time?

12

15

10

13

14

16

Standard merge algorithm — add to inversion count

when an element is moved from the upper array to the

solution

Use the merge algorithm to count
Inversions

Indicate the number of inversions for each
element detected when merging

Inversions

 Counting inversions between two sorted lists
— O(1) per element to count inversions

! 1

X | X [X [X | X | X | X |X Yy Iy |y |y |y

Y4 Y4 Y4 Y4 Y4 Y4 Y4 y4 Y4 Y4 Y4 Y4 y4 Y4

e Algorithm summary

— Satisfies the “Standard recurrence”
— T(n)=2T(n/2) + cn

Computing the Median

* Given n numbers, find the number of rank n/2
* One approach is sorting

— Sort the elements, and choose the middle one
— Can you do better?

Problem generalization

e Selection, given n numbers and an integer Kk,
find the k-th largest

Select(A, k)

Select(A, k)1
Choose element x from A
S;={yinAly<x}
S,={yinA|y>x}
Sg={yInAly=x}
if (IS;| >= k)
return Select(S,, k)
else if (|S,] + |S;] >= k)
return X
else
return Select(S;, k - |S,| - |S;))

Randomized Selection

e Choose the element at random

* Analysis can show that the algorithm has
expected run time O(n)

Deterministic Selection

* What is the run time of select if we can
guarantee that choose finds an x such that
|S;] <3n/4 and |S,| <3n/4in O(n) time

BFPRT Algorithm

* Avery clever choose algorithm . ..

Split into n/5 sets of size 5
M be the set of medians of these sets
Let x be the median of M

http://en.wikipedia.org/wiki/File:VaughanPratt.JPG

BFPRT runtime

S,| < 3n/4, |S,| < 3n/4

Split into n/5 sets of size 5

M be the set of medians of these sets
X be the median of M

Construct S; and S,

Recursive call In S; or S,

BFPRT Recurrence

* T(n) <=T(3n/4) + T(n/5) + cn

Prove that T(n) <=20cn

