

## Announcements

- Homework 5, Due Friday



## A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

Unroll recurrence for $T(n)=3 T(n / 3)+n$

$$
T(n)=T(n / 2)+c n
$$

## Solving the recurrence exactly

Where does this recurrence arise?


## Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ( $x>1$ )
- The bottom level wins
- Geometrically decreasing ( $x<1$ )
- The top level wins
- Balanced ( $x=1$ )
- Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n)=n+5 T(n / 8)$
- $T(n)=n+9 T(n / 8)$
- $T(n)=n^{2}+4 T(n / 2)$
- $T(n)=n^{3}+7 T(n / 2)$
- $T(n)=n^{1 / 2}+3 T(n / 4)$


## Recursive Matrix Multiplication

- How many recursive calls are made at each level?
$|r \mathrm{~s}|=|a \mathrm{~b}| \mathrm{e} \mathrm{g}$
A $N \times N$ matrix can be viewed as a $2 \times 2$ matrix with entries that are (N/2) $\times(\mathrm{N} / 2)$ matrices.
The recursive matrix
$r=a e+b f$ multiplication algorithm
$s=a g+b h$
$\mathrm{t}=\mathrm{ce}+\mathrm{df}$
$u=c g+d h$ ( $\mathrm{N} / 2$ ) $\times(\mathrm{N} / 2$ ) matrices and combines them using the equations for multiplying $2 \times 2$ matrices

What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:


## Strassen's Algorithm

|  | Where: |
| :---: | :---: |
| Multiply $2 \times 2$ Matrices: | $p_{1}=(b-d)(f+h)$ |
| $\left\|\begin{array}{ll}t & u\end{array}\right\|=\left\|\begin{array}{ll}\text { c } & d\end{array}\right\|$$\mid f$ $h$ | $p_{2}=(a+d)(e+h)$ |
|  | $p_{3}=(a-c)(e+g)$ |
| $r=p_{1}+p_{2}-p_{4}+p_{6}$ | $p_{4}=(a+b) h$ |
| $\mathrm{s}=\mathrm{p}_{4}+\mathrm{p}_{5}$ | $\mathrm{p}_{5}=\mathrm{a}(\mathrm{g}-\mathrm{h})$ |
| $\mathrm{t}=\mathrm{p}_{6}+\mathrm{p}_{7}$ | $\mathrm{p}_{6}=\mathrm{d}(\mathrm{f}-\mathrm{e})$ |
| $\mathrm{u}=\mathrm{p}_{2}-\mathrm{p}_{3}+\mathrm{p}_{5}-\mathrm{p}_{7}$ | $\mathrm{p}_{7}=(\mathrm{c}+\mathrm{d}) \mathrm{e}$ |

From AHU 1974

| Recurrence for Strassen's Algorithms |
| :--- |
| - $T(n)=7 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}^{2}$ |
| - What is the runtime? |
|  |
|  |
| $\log _{2} 7=2.8073549221$ |



