Divide and Conquer - MergeSort

Array Mergesort(Array a):
 n = a.Length;
 if (n <= 1)
 return a;
 b = Mergesort(a[0 .. n/2]);
 c = Mergesort(a[n/2+1 .. n-1]);
 return Merge(b, c);

Analysis: Cost of Merge, Cost of Mergesort
MS(n) = MS(n/2) + n;
MS(1) = 1;
Solution: MS(n) = n (log₂ n + 1)

A better mergesort (?)

• Divide into 3 subarrays and recursively sort
• Apply 3-way merge

What is the recurrence?

Unroll recurrence for \(T(n) = 3T(n/3) + n \)

T(n) = aT(n/b) + f(n)
T(n) = T(n/2) + cn

Where does this recurrence arise?

Solving the recurrence exactly

Total Work

\[\sum_{k=0}^{\log n} 2^k \cdot \frac{n}{2^k} = (2n - 1)n \]

T(n) = 4T(n/2) + n

T(n) = 2T(n/2) + n^2

T(n) = 2T(n/2) + n^{1/2}

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal – we care about the depth
What you really need to know about recurrences

• Work per level changes geometrically with the level
• Geometrically increasing ($x > 1$)
 – The bottom level wins
• Geometrically decreasing ($x < 1$)
 – The top level wins
• Balanced ($x = 1$)
 – Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

• $T(n) = n + 5T(n/8)$
• $T(n) = n + 9T(n/8)$
• $T(n) = n^2 + 4T(n/2)$
• $T(n) = n^3 + 7T(n/2)$
• $T(n) = n^{1/2} + 3T(n/4)$

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

\[
\begin{bmatrix}
 r & s \\
 t & u \\
\end{bmatrix}
\begin{bmatrix}
 a & b \\
 c & d \\
\end{bmatrix}
\begin{bmatrix}
 e & g \\
 f & h \\
\end{bmatrix}
\]

\[
\begin{align*}
 r &= ae + bf \\
 s &= ag + bh \\
 t &= ce + df \\
 u &= cg + dh \\
\end{align*}
\]

The recursive matrix multiplication algorithm recursively multiplies the $(N/2) \times (N/2)$ matrices and combines them using the equations for multiplying 2 x 2 matrices.

Recursive Matrix Multiplication

• How many recursive calls are made at each level?
• How much work in combining the results?
• What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:

Strassen’s Algorithm

Multiply 2 x 2 Matrices:

\[
\begin{bmatrix}
 r & s \\
 t & u \\
\end{bmatrix}
\begin{bmatrix}
 a & b \\
 c & d \\
\end{bmatrix}
\begin{bmatrix}
 e & g \\
 f & h \\
\end{bmatrix}
\]

\[
\begin{align*}
 r &= p_1 + p_2 - p_4 + p_6 \\
 s &= p_4 + p_5 \\
 t &= p_6 + p_7 \\
 u &= p_2 - p_3 + p_5 - p_7 \\
\end{align*}
\]

Where:

\[
\begin{align*}
 p_1 &= (b - d)(f + h) \\
 p_2 &= (a + d)(e + h) \\
 p_3 &= (a - c)(e + g) \\
 p_4 &= (a + b)h \\
 p_5 &= a(g - h) \\
 p_6 &= d(f - e) \\
 p_7 &= (c + d)e \\
\end{align*}
\]

From AHU 1974
Recurrence for Strassen’s Algorithms

- $T(n) = 7 \cdot T(n/2) + cn^2$
- What is the runtime?

log$_2$ 7 = 2.8073549221

BFPRT Recurrence

$T(n) \leq T(3n/4) + T(n/5) + 20n$

What bound do you expect?