CSE 417

Algorithms and Complexity

Autumn 2020
Lecture 14
MST + Recurrences

Announcements

- Homework
- Assignment will include a sample midterm
- Programming
- Shortest Path and Bottleneck Paths on Grid Graphs with random edge lengths
- What is the expected length of an s-t path?
- What is the expected bottleneck length of an s-t path

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components

Edge inclusion lemma

- Let S be a subset of V, and suppose $e=(u, v)$ is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
- Or equivalently, if e is not in T , then T is not a minimum spanning tree

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_{1}=\left(u_{1}, v_{1}\right)$ with u_{1} in S and v_{1} in V-S

- $\mathrm{T}_{1}=\mathrm{T}-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

$S=\{ \} ; \quad T=\{ \} ;$
while S != V
choose the minimum cost edge $e=(u, v)$, with u in S, and v in V-S add e to T add v to S

Prove Prim's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

Let $C=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{\mathrm{n}}\right\}\right\} ; \mathrm{T}=\{ \}$ while $|C|>1$

Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$
Add e to T

Prove Kruskal's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
- Fast Matrix Multiplication
- Counting Inversions (5.3)
- Closest Pair (5.4)
- Multiplication (5.5)

Divide and Conquer

Array Mergesort(Array a)\{

$$
\begin{aligned}
& \mathrm{n}=\text { a.Length; } \\
& \text { if }(\mathrm{n}<=1)
\end{aligned}
$$

return a;
$\mathrm{b}=$ Mergesort(a[0 .. n/2]);
$\mathrm{c}=$ Mergesort(a[n/2+1 .. $\mathrm{n}-1])$;
return Merge(b, c);
\}

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

$$
T(n)=2 T(n / 2)+c n ; T(1)=c ;
$$

Recurrence Analysis

- Solution methods
- Unrolling recurrence
- Guess and verify
- Plugging in to a "Master Theorem"

Unrolling the recurrence

$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} ; \mathrm{T}(1)=1 ;$

Substitution

Prove $T(n)<=n\left(\log _{2} n+1\right)$ for $n>=1$

Induction:
Base Case:

Induction Hypothesis:

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

What is the recurrence?

Unroll recurrence for $T(n)=3 T(n / 3)+n$

$T(n)=a T(n / b)+f(n)$

$T(n)=T(n / 2)+c n$

Where does this recurrence arise?

Solving the recurrence exactly

$T(n)=4 T(n / 2)+n$

$T(n)=2 T(n / 2)+n^{2}$

$T(n)=2 T(n / 2)+n^{1 / 2}$

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

