
CSE 417
Algorithms and Complexity

Autumn 2020
Lecture 14

MST + Recurrences

Announcements

• Homework

– Assignment will include a sample
midterm

– Programming

• Shortest Path and Bottleneck Paths on
Grid Graphs with random edge lengths

• What is the expected length of an s-t
path?

• What is the expected bottleneck
length of an s-t path

s

t

Greedy Algorithms for Minimum Spanning
Tree

• [Prim] Extend a tree by
including the cheapest out
going edge

• [Kruskal] Add the cheapest
edge that joins disjoint
components

4

115

7

20

8

22

a

b c

d

e

Edge inclusion lemma

• Let S be a subset of V, and suppose e = (u, v) is
the minimum cost edge of E, with u in S and v
in V-S

• e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not a
minimum spanning tree

S V - S

e

Proof

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) with u1 in S and v1

in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge

between S and V-S

e1

Optimality Proofs

• Prim’s Algorithm computes a MST

• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST
by Prim or Kruskal, the edge is the minimum
cost edge between S and V-S for some set S.

Prim’s Algorithm

S = { }; T = { };

while S != V

choose the minimum cost edge

e = (u,v), with u in S, and v in V-S

add e to T

add v to S

Prove Prim’s algorithm computes an MST

• Show an edge e is in the MST when it is added
to T

Kruskal’s Algorithm

Let C = {{v1}, {v2}, . . ., {vn}}; T = { }

while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the

minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T

Prove Kruskal’s algorithm computes an
MST

• Show an edge e is in the MST when it is added
to T

Divide and Conquer

• Recurrences, Sections 5.1 and 5.2

• Algorithms

– Fast Matrix Multiplication

– Counting Inversions (5.3)

– Closest Pair (5.4)

– Multiplication (5.5)

Divide and Conquer

Array Mergesort(Array a){

n = a.Length;

if (n <= 1)

return a;

b = Mergesort(a[0 .. n/2]);

c = Mergesort(a[n/2+1 .. n-1]);

return Merge(b, c);

}

Algorithm Analysis

• Cost of Merge

• Cost of Mergesort

T(n) = 2T(n/2) + cn; T(1) = c;

Recurrence Analysis

• Solution methods

– Unrolling recurrence

– Guess and verify

– Plugging in to a “Master Theorem”

Unrolling the recurrence

Substitution

Prove T(n) <= n (log2n + 1) for n >= 1

Induction:

Base Case:

Induction Hypothesis:

T(n) = 2T(n/2) + n; T(1) = 1;

A better mergesort (?)

• Divide into 3 subarrays and recursively sort

• Apply 3-way merge

What is the recurrence?

Unroll recurrence for T(n) = 3T(n/3) + n

T(n) = aT(n/b) + f(n)

T(n) = T(n/2) + cn

Where does this recurrence arise?

Solving the recurrence exactly

T(n) = 4T(n/2) + n

T(n) = 2T(n/2) + n2

T(n) = 2T(n/2) + n1/2

Recurrences

• Three basic behaviors

– Dominated by initial case

– Dominated by base case

– All cases equal – we care about the depth

