Announcements

• Homework
 – Assignment will include a sample midterm
 – Programming
 • Shortest Path and Bottleneck Paths on Grid Graphs with random edge lengths
 • What is the expected length of an s-t path?
 • What is the expected bottleneck length of an s-t path
Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest outgoing edge
- [Kruskal] Add the cheapest edge that joins disjoint components
Edge inclusion lemma

Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$.

- e is in every minimum spanning tree of G.
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree.
Proof

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in V-S

$T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree
Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.
Prim’s Algorithm

S = { }; T = { };
while S != V

 choose the minimum cost edge
e = (u,v), with u in S, and v in V-S

 add e to T

 add v to S
Prove Prim’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Kruskal’s Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \quad T = \{\}$

while $|C| > 1$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$

Add e to T
Prove Kruskal’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Divide and Conquer

• Recurrences, Sections 5.1 and 5.2
• Algorithms
 – Fast Matrix Multiplication
 – Counting Inversions (5.3)
 – Closest Pair (5.4)
 – Multiplication (5.5)
Array Mergesort(Array a) {
 n = a.Length;
 if (n <= 1)
 return a;
 b = Mergesort(a[0 .. n/2]);
 c = Mergesort(a[n/2+1 .. n-1]);
 return Merge(b, c);
}
Algorithm Analysis

• Cost of Merge
• Cost of Mergesort
T(n) = 2T(n/2) + cn; T(1) = c;
Recurrence Analysis

• Solution methods
 – Unrolling recurrence
 – Guess and verify
 – Plugging in to a “Master Theorem”
Unrolling the recurrence
Substitution

Prove $T(n) \leq n(\log_2 n + 1)$ for $n \geq 1$

Induction:
Base Case:

Induction Hypothesis:
A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

What is the recurrence?
Unroll recurrence for $T(n) = 3T(n/3) + n$
\[T(n) = aT(n/b) + f(n) \]
$T(n) = T(n/2) + cn$

Where does this recurrence arise?
Solving the recurrence exactly
T(n) = 4T(n/2) + n
\(T(n) = 2T(n/2) + n^2 \)
\[T(n) = 2T(n/2) + n^{1/2} \]
Recurrences

• Three basic behaviors
 – Dominated by initial case
 – Dominated by base case
 – All cases equal – we care about the depth