CSE 417 Algorithms and Complexity

Autumn 2020 Lecture 14 MST + Recurrences

Announcements

- Homework
 - Assignment will include a sample midterm
 - Programming
 - Shortest Path and Bottleneck Paths on Grid Graphs with random edge lengths
 - What is the expected length of an s-t path?
 - What is the expected bottleneck length of an s-t path

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components

Edge inclusion lemma

- Let S be a subset of V, and suppose e = (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 Or equivalently, if e is not in T, then T is not a minimum spanning tree

e is the minimum cost edge between S and V-S

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S

- T₁ = T {e₁} + {e} is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST

 Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

choose the minimum cost edge e = (u,v), with u in S, and v in V-S add e to T add v to S

Prove Prim's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

```
Let C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}
while |C| > 1
```

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_j by $C_i \cup C_j$ Add e to T

Prove Kruskal's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Fast Matrix Multiplication
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)

Divide and Conquer

Array Mergesort(Array a){ n = a.Length; if (n <= 1) return a; b = Mergesort(a[0 .. n/2]); c = Mergesort(a[n/2+1 .. n-1]); return Merge(b, c);

}

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

T(n) = 2T(n/2) + cn; T(1) = c;

Recurrence Analysis

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"

T(n) = 2T(n/2) + n; T(1) = 1;

Substitution

Prove $T(n) \le n (\log_2 n + 1)$ for $n \ge 1$

Induction: Base Case:

Induction Hypothesis:

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

Unroll recurrence for T(n) = 3T(n/3) + n

T(n) = aT(n/b) + f(n)

T(n) = T(n/2) + cn

Where does this recurrence arise?

Solving the recurrence exactly

T(n) = 4T(n/2) + n

$T(n) = 2T(n/2) + n^2$

$T(n) = 2T(n/2) + n^{1/2}$

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth