

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Announcements

- Homework
- Assignment will include a sample midterm
- Programming
- Shortest Path and Bottleneck Paths on Grid Graphs with random edge lengths
- What is the expected length of an s-t path?
- What is the expected bottleneck length of an s-t path

Minimum Spanning Tree Definitions

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is an UNDIRECTED graph
- Weights associated with the edges
- Find a spanning tree of minimum weight
- If not connected, complain

Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest out going edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that
 does not disconnect the graph

Greedy Algorithm 3 Reverse-Delete Algorithm

- Delete the most expensive edge that does not disconnect the graph

Construct the MST with the reversedelete algorithm

Label the edges in order of removal

Greedy Algorithm 2 Kruskal's Algorithm

- Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal's algorithm
Label the edges in order of insertion

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose $e=(u, v)$ is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
- Or equivalently, if e is not in T , then T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S .
- $\mathrm{T}_{1}=\mathrm{T}-\left\{\mathrm{e}_{1}\right\}+\{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree
e is the minimum cost edge between S and V-S

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_{1}=\left(u_{1}, v_{1}\right)$ with u_{1} in S and v_{1} in V-S

Prim's Algorithm

$\mathrm{S}=\{ \} ; \mathrm{T}=\{ \} ;$
while S != V
choose the minimum cost edge $e=(u, v)$, with u in S, and v in V-S add e to T add v to S

Prove Prim's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

Let $C=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{\mathrm{n}}\right\}\right\} ; \mathrm{T}=\{ \}$
while $|C|>1$
Let $e=(u, v)$ with u in C_{i} and v in C_{i} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$
Add e to T

Application: Clustering

- Given a collection of points in an r dimensional space and an integer K, divide the points into K sets that are closest together

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
$-\operatorname{dist}\left(S_{1}, S_{2}\right)=\min \left\{\operatorname{dist}(x, y) \mid x\right.$ in S_{1}, y in $\left.S_{2}\right\}$

Distance Clustering Algorithm

```
Let C = {{\mp@subsup{v}{1}{}},{\mp@subsup{v}{2}{}},\ldots, ., {\mp@subsup{v}{n}{}}};T={}
while |C| > K
```

Let $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$

Shortest paths in directed graphs vs undirected graphs

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Finding a minimum branching

Finding a minimum branching

- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching

Idea for branching algorithm

- Select minimum cost edge going into each vertex
- If graph is a branching then done
- Otherwise collapse cycles and repeat

Finding a minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
- If this graph is a branching, then it is the minimum cost branching
- Otherwise, the graph contains one or more cycles
- Collapse the cycles in the original graph to super vertices
- Reweight the graph and repeat the process

Correctness Proof

Lemma 4.38 Let C be a cycle in G consisting of edges of cost 0 with r not in C . There is an optimal branching rooted at r that has exactly one edge entering C.

- The lemma justifies using the edges of the cycle in the branching
- An induction argument is used to cover the multiple levels of compressing cycles

