Announcements

- Homework
 - Assignment will include a sample midterm
 - Programming
 - Shortest Path and Bottleneck Paths on Grid Graphs with random edge lengths
 - What is the expected length of an s-t path?
 - What is the expected bottleneck length of an s-t path

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree Definitions

- G=(V,E) is an UNDIRECTED graph
- Weights associated with the edges
- Find a spanning tree of minimum weight
 - If not connected, complain

Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest outgoing edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that does not disconnect the graph
Greedy Algorithm 1
Prim’s Algorithm
• Extend a tree by including the cheapest outgoing edge

Greedy Algorithm 2
Kruskal’s Algorithm
• Add the cheapest edge that joins disjoint components

Greedy Algorithm 3
Reverse-Delete Algorithm
• Delete the most expensive edge that does not disconnect the graph

Dijkstra’s Algorithm for Minimum Spanning Trees

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree
• [Prim] Extend a tree by including the cheapest outgoing edge
• [Kruskal] Add the cheapest edge that joins disjoint components
• [ReverseDelete] Delete the most expensive edge that does not disconnect the graph
Why do the greedy algorithms work?

• For simplicity, assume all edge costs are distinct

Edge inclusion lemma

• Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$

• e is in every minimum spanning tree of G
 – Or equivalently, if e is not in T, then T is not a minimum spanning tree

Proof

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in $V - S$

• $T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree

Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and $V - S$ for some set S.

Prim’s Algorithm

```plaintext
S = {}; T = {};
while S != V
  choose the minimum cost edge e = (u,v), with u in S, and v in V - S
  add e to T
  add v to S
```

Prove Prim’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Kruskal’s Algorithm

Let $C = \{(v_1), \{v_2\}, \ldots, \{v_n\}\}; \ T = \{\}$

while $|C| > 1$

- Let $e = (u, v)$ with $u \in C_i$ and $v \in C_j$ be the minimum cost edge joining distinct sets in C
- Replace C_i and C_j by $C_i \cup C_j$
- Add e to T

Prove Kruskal’s algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Application: Clustering

- Given a collection of points in an r-dimensional space and an integer K, divide the points into K sets that are closest together

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
 - $dist(S_1, S_2) = \min \{dist(x, y) | x \in S_1, y \in S_2\}$

Divide into 2 clusters

Divide into 3 clusters
Divide into 4 clusters

Distance Clustering Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}$; $T = \{\}$
while $|C| > K$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C
Replace C_i and C_j by $C_i \cup C_j$

K-clustering

Shortest paths in directed graphs vs undirected graphs

What about the minimum spanning tree of a directed graph?
- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r
Also called an arborescence

Finding a minimum branching
Another MST Algorithm
- Choose minimum cost edge into each vertex
- Merge into components
- Repeat until done

Finding a minimum branching
- Remove all edges going into \(r \)
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching

Finding a minimum branching
- Consider the graph that consists of the minimum cost edge coming into each vertex
 - If this graph is a branching, then it is the minimum cost branching
 - Otherwise, the graph contains one or more cycles
 - Collapse the cycles in the original graph to super vertices
 - Reweight the graph and repeat the process

Correctness Proof
Lemma 4.38 Let \(C \) be a cycle in \(G \) consisting of edges of cost 0 with \(r \) not in \(C \). There is an optimal branching rooted at \(r \) that has exactly one edge entering \(C \).

- The lemma justifies using the edges of the cycle in the branching
- An induction argument is used to cover the multiple levels of compressing cycles