Announcements

- Reading
 - 4.4, 4.5, 4.7, 4.8
- Homework
 - Assignment will include a sample midterm

Single Source Shortest Path Problem

- Given a directed graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex

Dijkstra’s Algorithm

```plaintext
S = {}; d[s] = 0; d[v] = infinity for v != s
While S != V
  Choose v in V-S with minimum d[v]
  Add v to S
  For each w in the neighborhood of v
    d[w] = min(d[w], d[v] + c(v, w))
```

Assume all edges have non-negative cost

Correctness Proof

- Elements in S have the correct label
- Induction: when v is added to S, it has the correct distance label
 - $\text{Dist}(s, v) = d[v]$ when v added to S

Dijkstra Implementation

```plaintext
S = {}; d[s] = 0; d[v] = infinity for v != s
While S != V
  Choose v in V-S with minimum d[v]
  Add v to S
  For each w in the neighborhood of v
    d[w] = min(d[w], d[v] + c(v, w))
```

- Basic implementation requires Heap for tracking the distance values
- Run time $O(m \log n)$
O(n^2) Implementation for Dense Graphs

FOR i := 1 TO n
 d[i] := Infinity; visited[i] := FALSE;
FOR i := 1 TO n
 d[s] := 0;

FOR i := 1 TO n
 v := -1; dMin := Infinity;
 FOR j := 1 TO n
 IF visited[j] = FALSE AND d[j] < dMin
 v := j; dMin := d[j];
 IF v = -1 RETURN;
 visited[v] := TRUE;
 FOR j := 1 TO n
 IF d[v] + len[v, j] < d[j]
 d[j] := d[v] + len[v, j];
 prev[j] := v;

Future stuff for shortest paths

• Bellman-Ford Algorithm
 – O(nm) time
 – Handles negative cost edges
 • Identifies negative cost cycle if present
 – Dynamic programming algorithm
 – Very easy to implement

Bottleneck Shortest Path

• Define the bottleneck distance for a path to be the maximum cost edge along the path

How do you adapt Dijkstra’s algorithm to handle bottleneck distances

• Does the correctness proof still apply?

Dijkstra’s Algorithm for Bottleneck Shortest Paths

S := {}; d[s] = negative infinity; d[v] = infinity for v != s
While S != V
 Choose v in V - S with minimum d[v]
 Add v to S
 For each w in the neighborhood of v
 d[w] := min(d[v], max(d[v], c(v, w)))
Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree Definitions

- G=(V,E) is an UNDIRECTED graph
- Weights associated with the edges
- Find a spanning tree of minimum weight
- If not connected, complain

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest outgoing edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that does not disconnect the graph

Greedy Algorithm 1
Prim’s Algorithm

- Extend a tree by including the cheapest outgoing edge

Greedy Algorithm 2
Kruskal’s Algorithm

- Add the cheapest edge that joins disjoint components
Greedy Algorithm 3
Reverse-Delete Algorithm
• Delete the most expensive edge that does not disconnect the graph

Dijkstra's Algorithm for Minimum Spanning Trees
\[S = \{ \} \quad \text{d}[s] = 0 \quad \text{d}[v] = \infty \text{ for } v \neq s \]
While \(S \neq V \)
 Choose \(v \) in \(V \) - \(S \) with minimum \(d[v] \)
 Add \(v \) to \(S \)
 For each \(w \) in the neighborhood of \(v \)
 \(d[w] = \min(d[w], c(v, w)) \)

Minimum Spanning Tree
Undirected Graph \(G=(V,E) \) with edge weights

Greedy Algorithms for Minimum Spanning Tree
• [Prim] Extend a tree by including the cheapest outgoing edge
• [Kruskal] Add the cheapest edge that joins disjoint components
• [ReverseDelete] Delete the most expensive edge that does not disconnect the graph

Why do the greedy algorithms work?
• For simplicity, assume all edge costs are distinct

Edge inclusion lemma
• Let \(S \) be a subset of \(V \), and suppose \(e = (u, v) \) is the minimum cost edge of \(E \), with \(u \) in \(S \) and \(v \) in \(V \) - \(S \)
• \(e \) is in every minimum spanning tree of \(G \)
 – Or equivalently, if \(e \) is not in \(T \), then \(T \) is not a minimum spanning tree
Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in V-S

![Diagram](https://via.placeholder.com/150)

- $T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree