CSE 417

Algorithms and Complexity

Autumn 2020
Lecture 12
Shortest Paths Algorithm and Minimum Spanning Trees

Announcements

- Reading
-4.4, 4.5, 4.7, 4.8
- Homework
- Assignment will include a sample midterm

Single Source Shortest Path Problem

- Given a directed graph and a start vertex s
- Determine distance of every vertex from s
- Identify shortest paths to each vertex

Assume all edges have non-negative cost

Dijkstra's Algorithm

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum $\mathrm{d}[\mathrm{v}]$
Add v to S
For each w in the neighborhood of v

$$
\mathrm{d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))
$$

Correctness Proof

- Elements in S have the correct label
- Induction: when v is added to S, it has the correct distance label
- Dist(s, v) = d[v] when vadded to S

Dijkstra Implementation

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v

$$
\mathrm{d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))
$$

- Basic implementation requires Heap for tracking the distance values
- Run time O(m log n)

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ Implementation for Dense Graphs

```
FOR i := 1 TO n
    d[i] := Infinity; visited[i] := FALSE;
d[s] := 0;
FOR i :=1 TO n
    V := -1; dMin := Infinity;
    FOR j := 1 TO n
        IF visited[j] = FALSE AND d[j] < dMin
                        V := j; dMin := d[j];
    IF v = -1
        RETURN;
    visited[v] := TRUE;
    FOR j := 1 TO n
    IFd[v] + len[v, j] < d[j]
        d[j] := d[v] + len[v, j];
        prev[j] := v;
```


Future stuff for shortest paths

- Bellman-Ford Algorithm
- O(nm) time
- Handles negative cost edges
- Identifies negative cost cycle if present
- Dynamic programming algorithm
- Very easy to implement

Bottleneck Shortest Path

- Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths

(a)
(e)
(s)
(c)
©
(1)

How do you adapt Dijkstra's algorithm to handle bottleneck distances

- Does the correctness proof still apply?

Dijkstra's Algorithm for Bottleneck Shortest Paths

$S=\{ \} ; \quad d[s]=$ negative infinity; $\quad d[v]=$ infinity for $v!=s$ While S != V

Choose v in V-S with minimum $\mathrm{d}[\mathrm{v}]$
Add v to S
For each w in the neighborhood of v

$$
\mathrm{d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \max (\mathrm{d}[\mathrm{v}], \mathrm{c}(\mathrm{v}, \mathrm{w})))
$$

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree Definitions

- $G=(V, E)$ is an UNDIRECTED graph
- Weights associated with the edges
- Find a spanning tree of minimum weight
- If not connected, complain

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest out going edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that does not disconnect the graph

Greedy Algorithm 1 Prim's Algorithm

- Extend a tree by including the cheapest out going edge

Construct the MST with Prim's algorithm starting from vertex a

Label the edges in order of insertion

Greedy Algorithm 2 Kruskal's Algorithm

- Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal's algorithm

Label the edges in order of insertion

Greedy Algorithm 3 Reverse-Delete Algorithm

- Delete the most expensive edge that does not disconnect the graph

Construct the MST with the reversedelete algorithm

Label the edges in order of removal

Dijkstra's Algorithm for Minimum Spanning Trees

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum $\mathrm{d}[\mathrm{v}]$
Add v to S
For each w in the neighborhood of v

$$
d[w]=\min (d[w], c(v, w))
$$

Minimum Spanning Tree

Undirected Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with edge
 weights

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the
 graph

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose $e=(u, v)$ is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
- Or equivalently, if e is not in T , then T is not a minimum spanning tree

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_{1}=\left(u_{1}, v_{1}\right)$ with u_{1} in S and v_{1} in V-S

- $\mathrm{T}_{1}=\mathrm{T}-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

