
CSE 417
Algorithms and Complexity

Autumn 2020
Lecture 12

Shortest Paths Algorithm and Minimum 
Spanning Trees



Announcements

• Reading

– 4.4, 4.5, 4.7, 4.8

• Homework

– Assignment will include a sample midterm



Single Source Shortest Path Problem
• Given a directed graph and a start vertex s

– Determine distance of every vertex from s

– Identify shortest paths to each vertex
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Dijkstra’s Algorithm

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
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Assume all edges have non-negative cost



Correctness Proof

• Elements in S have the correct label

• Induction:  when v is added to S, it has the 
correct distance label 
– Dist(s, v) = d[v] when v added to S
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Dijkstra Implementation

• Basic implementation requires Heap for 
tracking the distance values

• Run time O(m log n)

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))



O(n2) Implementation for Dense Graphs

FOR i := 1 TO n

d[i] := Infinity;  visited[i] := FALSE;

d[s] := 0;

FOR i := 1 TO n

v := -1;  dMin := Infinity;

FOR j := 1 TO n

IF visited[j] = FALSE AND d[j] < dMin

v := j; dMin := d[j];

IF v = -1

RETURN;

visited[v] := TRUE;

FOR j := 1 TO n

IF d[v] + len[v, j] < d[j]

d[j] := d[v] + len[v, j];

prev[j] := v;



Future stuff for shortest paths

• Bellman-Ford Algorithm

– O(nm) time

– Handles negative cost edges

• Identifies negative cost cycle if present

– Dynamic programming algorithm

– Very easy to implement



Bottleneck Shortest Path

• Define the bottleneck distance for a path to be 
the maximum cost edge along the path
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Compute the bottleneck shortest paths
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How do you adapt Dijkstra’s algorithm  to handle 
bottleneck distances

• Does the correctness proof still apply?



Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S = { };    d[s] = negative infinity;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))
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Minimum Spanning Tree

• Introduce Problem

• Demonstrate three different greedy 
algorithms

• Provide proofs that the algorithms work



Minimum Spanning Tree Definitions

• G=(V,E) is an UNDIRECTED graph

• Weights associated with the edges

• Find a spanning tree of minimum weight

– If not connected,  complain



Minimum Spanning Tree
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Greedy Algorithms for Minimum Spanning 
Tree

• Extend a tree by 
including the cheapest 
out going edge

• Add the cheapest edge 
that joins disjoint 
components

• Delete the most 
expensive edge that 
does not disconnect the 
graph
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Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest out 
going edge
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Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint 
components
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Greedy Algorithm 3
Reverse-Delete Algorithm

• Delete the most expensive edge that does not 
disconnect the graph
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Dijkstra’s Algorithm
for Minimum Spanning Trees

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], c(v, w))
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Minimum Spanning Tree
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Greedy Algorithms for Minimum Spanning 
Tree

• [Prim] Extend a tree by 
including the cheapest out 
going edge

• [Kruskal] Add the cheapest 
edge that joins disjoint 
components

• [ReverseDelete] Delete the 
most expensive edge that 
does not disconnect the 
graph

4

115

7

20

8

22

a

b c

d

e



Why do the greedy algorithms work?

• For simplicity, assume all edge costs are 
distinct



Edge inclusion lemma

• Let S be a subset of V, and suppose e = (u, v) is 
the minimum cost edge of E, with u in S and v 
in V-S

• e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not a 
minimum spanning tree

S V - S

e



Proof 

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) with u1 in S and v1

in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge 

between S and V-S


