
CSE 417
Algorithms and Complexity

Autumn 2020
Lecture 12

Shortest Paths Algorithm and Minimum
Spanning Trees

Announcements

• Reading

– 4.4, 4.5, 4.7, 4.8

• Homework

– Assignment will include a sample midterm

Single Source Shortest Path Problem
• Given a directed graph and a start vertex s

– Determine distance of every vertex from s

– Identify shortest paths to each vertex

s

v

x

u
1 2

5

3 4

s

v

x

u

1

3

3

Dijkstra’s Algorithm

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

1

4

3

2

3

2

1

2

10

1

2 2

5

4

Assume all edges have non-negative cost

Correctness Proof

• Elements in S have the correct label

• Induction: when v is added to S, it has the
correct distance label
– Dist(s, v) = d[v] when v added to S

s

y

v

x

u

S

Dijkstra Implementation

• Basic implementation requires Heap for
tracking the distance values

• Run time O(m log n)

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

O(n2) Implementation for Dense Graphs

FOR i := 1 TO n

d[i] := Infinity; visited[i] := FALSE;

d[s] := 0;

FOR i := 1 TO n

v := -1; dMin := Infinity;

FOR j := 1 TO n

IF visited[j] = FALSE AND d[j] < dMin

v := j; dMin := d[j];

IF v = -1

RETURN;

visited[v] := TRUE;

FOR j := 1 TO n

IF d[v] + len[v, j] < d[j]

d[j] := d[v] + len[v, j];

prev[j] := v;

Future stuff for shortest paths

• Bellman-Ford Algorithm

– O(nm) time

– Handles negative cost edges

• Identifies negative cost cycle if present

– Dynamic programming algorithm

– Very easy to implement

Bottleneck Shortest Path

• Define the bottleneck distance for a path to be
the maximum cost edge along the path

s

v

x

u
6 5

5

3 4

2

Compute the bottleneck shortest paths

a

b

c
s

e

g

f

d

4

2

-3

6

6
5

4

-2
3

4

6

3

7

4
a

b

c
s

e

g

f

d

How do you adapt Dijkstra’s algorithm to handle
bottleneck distances

• Does the correctness proof still apply?

Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S = { }; d[s] = negative infinity; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))

s

u

v

z

y

x

a

b

4

1

1

1

2

2
3

3

3
4

4

5

Minimum Spanning Tree

• Introduce Problem

• Demonstrate three different greedy
algorithms

• Provide proofs that the algorithms work

Minimum Spanning Tree Definitions

• G=(V,E) is an UNDIRECTED graph

• Weights associated with the edges

• Find a spanning tree of minimum weight

– If not connected, complain

Minimum Spanning Tree

a

b

c
s

e

g

f

9

2

13

6

4

21
15

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Greedy Algorithms for Minimum Spanning
Tree

• Extend a tree by
including the cheapest
out going edge

• Add the cheapest edge
that joins disjoint
components

• Delete the most
expensive edge that
does not disconnect the
graph

4

115

7

20

8

22

a

b c

d

e

Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest out
going edge

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with Prim’s

algorithm starting

from vertex a

Label the edges in

order of insertion

Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint
components

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with Kruskal’s

algorithm

Label the edges in

order of insertion

Greedy Algorithm 3
Reverse-Delete Algorithm

• Delete the most expensive edge that does not
disconnect the graph

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with the reverse-

delete algorithm

Label the edges in

order of removal

Dijkstra’s Algorithm
for Minimum Spanning Trees

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], c(v, w))

s

u

v

z

y

x

a

b

4

1

1

1

2

2
3

3

3
4

4

5

Minimum Spanning Tree

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Undirected Graph

G=(V,E) with edge

weights

Greedy Algorithms for Minimum Spanning
Tree

• [Prim] Extend a tree by
including the cheapest out
going edge

• [Kruskal] Add the cheapest
edge that joins disjoint
components

• [ReverseDelete] Delete the
most expensive edge that
does not disconnect the
graph

4

115

7

20

8

22

a

b c

d

e

Why do the greedy algorithms work?

• For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

• Let S be a subset of V, and suppose e = (u, v) is
the minimum cost edge of E, with u in S and v
in V-S

• e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not a
minimum spanning tree

S V - S

e

Proof

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) with u1 in S and v1

in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge

between S and V-S

