

Autumn 2020
Lecture 11
Dijkstra's algorithm

Upcoming lectures

- Topics
- Dijkstra's Algorithm (Section 4.4)
- Monday: Minimum Spanning Trees
- Reading
-4.4, 4.5, 4.7, 4.8

Single Source Shortest Path Problem

- Given a graph and a start vertex s
- Determine distance of every vertex from s
- Identify shortest paths to each vertex
- Express concisely as a "shortest paths tree"
- Each vertex has a pointer to a predecessor on shortest path

Warmup

- If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t
- WHY?

Who was Dijkstra?

- What were his major contributions?
http://www.cs.utexas.edu/users/EWD/
- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
- algorithm design
- programming languages
- program design
- operating systems
- distributed processing
- formal specification and verification
- design of mathematical arguments

Dijkstra's Algorithm as a greedy algorithm

- Elements committed to the solution by order of minimum distance

Correctness Proof

- Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.

Proof

- Let v be a vertex in $\mathrm{V}-\mathrm{S}$ with minimum $\mathrm{d}[\mathrm{v}]$
- Let P_{v} be a path of length $d[v]$, with an edge (u, v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)
$-P=P_{s x}+c(x, y)+P_{y v}$
$-\operatorname{Len}\left(P_{s x}\right)+c(x, y)>=d[y]$
$-\operatorname{Len}\left(P_{y v}\right)>=0$
$-\operatorname{Len}(\mathrm{P})>=\mathrm{d}[\mathrm{y}]+0>=\mathrm{d}[\mathrm{v}]$

Negative Cost Edges

- Draw a small example a negative cost edge and show that Dijkstra's algorithm fails on this example

Dijkstra Implementation

```
S ={}; d[s] = 0; d[v] = infinity for v != s
While S != V
```

Choose v in V-S with minimum $d[v]$
Add v to S
For each w in the neighborhood of v
$d[w]=\min (d[w], d[v]+c(v, w)$

- Basic implementation requires Heap for tracking the distance values
- Run time $O(m \log n)$

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ Implementation for Dense Graphs

FOR i := 1 TO n
d[i] := Infinity; visited[i] := FALSE;
$d[s]:=0$;
FOR i := 1 TO n
$\mathrm{V}:=-1$; dMin $:=$ Infinity;
FOR $j:=1$ TO n
IF visited $[j]=$ FALSE AND $d[j]<d M i n$
IF v = -1 v := j; dMin $:=d[j] ;$
RETURN;
visited[v] := TRUE;
FOR $j:=1$ TO n
IF $d[v]+\operatorname{len}[v, j]<d[j]$
$d[j]:=d[v]+\operatorname{len}[v, j] ;$
prev[j] := v;

Bottleneck Shortest Path

- Define the bottleneck distance for a path to be the maximum cost edge along the path

How do you adapt Dijkstra's algorithm to handle bottleneck distances

- Does the correctness proof still apply?

