

CSE 417 Algorithms and Complexity

Autumn 2020 Lecture 11 Dijkstra's algorithm

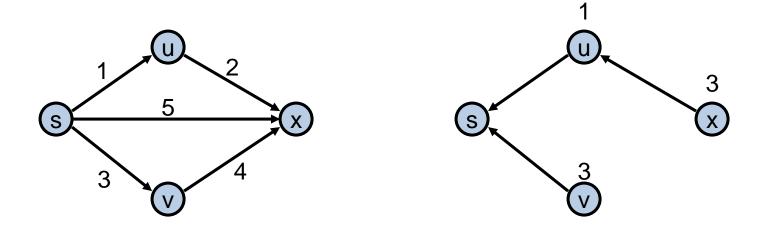
Upcoming lectures

- Topics
 - Dijkstra's Algorithm (Section 4.4)
 - Monday: Minimum Spanning Trees
- Reading

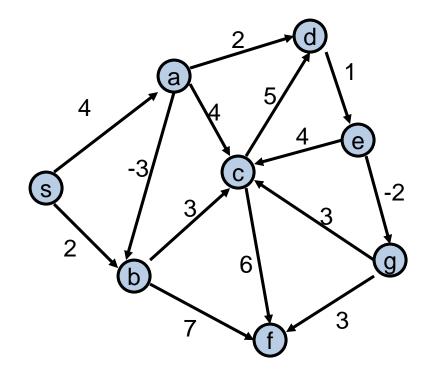
-4.4, 4.5, 4.7, 4.8

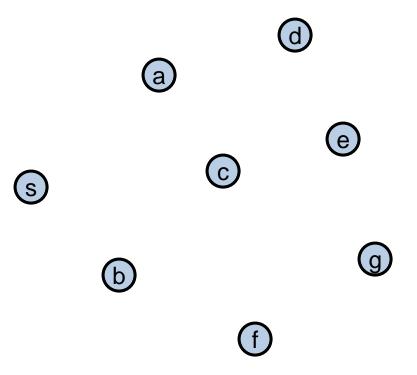
Single Source Shortest Path Problem

- Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path



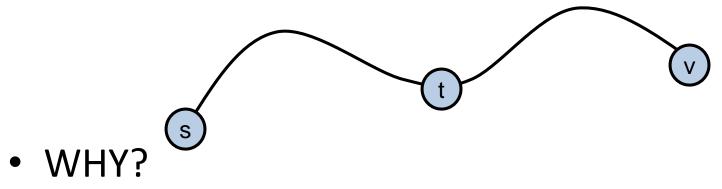
Construct Shortest Path Tree from s





Warmup

 If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t



Assume all edges have non-negative cost

Dijkstra's Algorithm

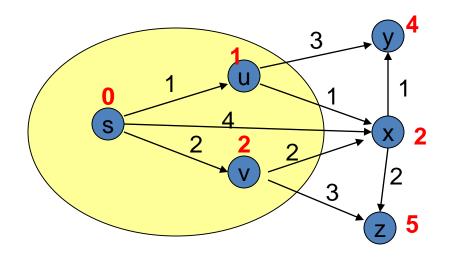
S = { }; d[s] = 0; d[v] = infinity for v != s While S != V

Choose v in V-S with minimum d[v]

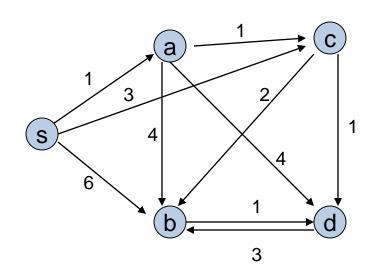
Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))



Simulate Dijkstra's algorithm (starting from s) on the graph



R	ound	Vertex Added	S	а	b	С	d
	1						
	2						
	3						
	4						
	5						

Who was Dijkstra?

• What were his major contributions?

http://www.cs.utexas.edu/users/EWD/

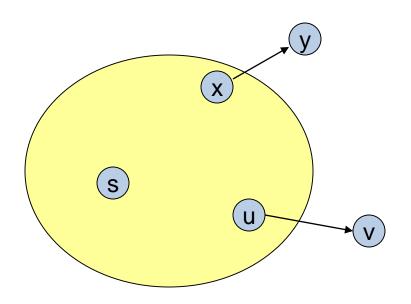
- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
 - algorithm design
 - programming languages
 - program design
 - operating systems
 - distributed processing
 - formal specification and verification
 - design of mathematical arguments

Dijkstra's Algorithm as a greedy algorithm

 Elements committed to the solution by order of minimum distance

Correctness Proof

- Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.



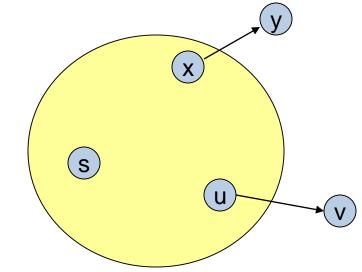
Proof

- Let v be a vertex in V-S with minimum d[v]
- Let P_v be a path of length d[v], with an edge (u,v)
- Let P be some other path to v. Suppose P first leaves
 S on the edge (x, y)

$$- P = P_{sx} + c(x,y) + P_{yy}$$

$$- \text{Len}(P_{sx}) + c(x,y) >= d[y]$$

- $\text{Len}(P_{yv}) >= 0$
- Len(P) >= d[y] + 0 >= d[v]



Negative Cost Edges

 Draw a small example a negative cost edge and show that Dijkstra's algorithm fails on this example

Dijkstra Implementation

```
S = \{ \}; \quad d[s] = 0; \quad d[v] = infinity \text{ for } v != s
While S != V
Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v
d[w] = min(d[w], d[v] + c(v, w))
```

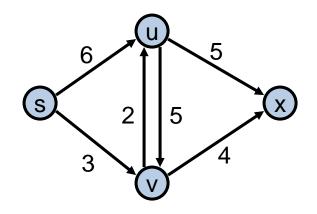
- Basic implementation requires Heap for tracking the distance values
- Run time O(m log n)

O(n²) Implementation for Dense Graphs

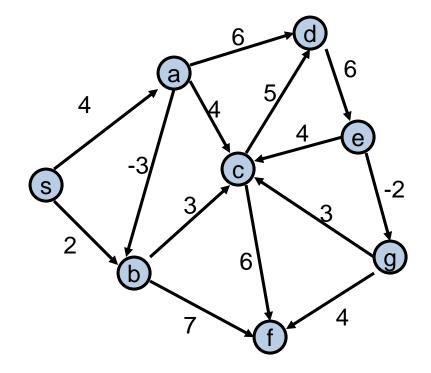
```
FOR i := 1 TO n
      d[i] := Infinity; visited[i] := FALSE;
d[s] := 0;
FOR i := 1 TO n
      v := -1; dMin := Infinity;
      FOR j := 1 TO n
             IF visited[j] = FALSE AND d[j] < dMin
                    v := j; dMin := d[j];
       TF v = -1
             RETURN;
      visited[v] := TRUE;
      FOR j := 1 TO n
             IF d[v] + len[v, j] < d[j]
                    d[j] := d[v] + len[v, j];
                    prev[j] := v;
```

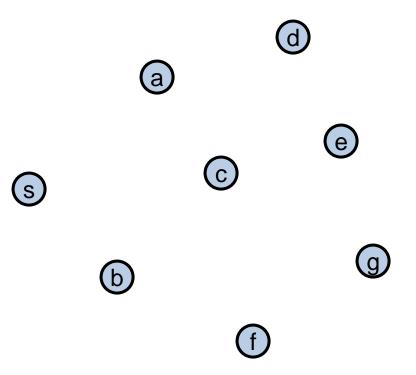
Bottleneck Shortest Path

• Define the bottleneck distance for a path to be the maximum cost edge along the path



Compute the bottleneck shortest paths





How do you adapt Dijkstra's algorithm to handle bottleneck distances

• Does the correctness proof still apply?