
10/20/2020

1

CSE 417

Algorithms and Complexity

Richard Anderson

Autumn 2020

Lecture 10 – Greedy Algorithms III

Announcements

• Today’s lecture

– Kleinberg-Tardos, 4.3, 4.4

• Wednesday and Friday

– Kleinberg-Tardos, 4.4, 4.5

Midterm

• Pro:
– Feedback on understanding, incentive for mastering

material, complementary assessment to homework,
established part of course

• Con:
– Administrative difficulties in ensuring “exam

conditions”, time zones, extra work in multiple
versions

• Approach:
– Include a midterm in the homework problems,

encourage students to first do midterm under exam
conditions, but then redo problems under homework
conditions. Count as a regular assignment.

Greedy Algorithms

• Solve problems with the simplest possible

algorithm

• Today’s problems (Sections 4.2, 4.3)

– Homework Scheduling

– Optimal Caching

• Start Dijkstra’s shortest paths algorithm

Homework Scheduling

• Tasks to perform

• Deadlines on the tasks

• Freedom to schedule tasks in any order

• Can I get all my work turned in on time?

• If I can’t get everything in, I want to

minimize the maximum lateness

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness: Li = fi – di if fi >= di

10/20/2020

2

Determine the minimum lateness

2

3

4

5

6

4

5

12

DeadlineTime

a1

a2

a3

a4

Greedy Algorithm

• Earliest deadline first

• Order jobs by deadline

• This algorithm is optimal

Analysis

• Suppose the jobs are ordered by deadlines,

d1 <= d2 <= . . . <= dn

• A schedule has an inversion if job j is scheduled

before i where j > i

• The schedule A computed by the greedy

algorithm has no inversions.

• Let O be the optimal schedule, we want to show

that A has the same maximum lateness as O

List the inversions

2

3

4

5

4

5

6

12

DeadlineTime

a1

a2

a3

a4

a4 a2 a3a1

Lemma: There is an optimal

schedule with no idle time

• It doesn’t hurt to start your homework early!

• Note on proof techniques

– This type of can be important for keeping proofs clean

– It allows us to make a simplifying assumption for the

remainder of the proof

a4 a2 a3 a1

Lemma

• If there is an inversion i, j, there is a pair of

adjacent jobs i’, j’ which form an inversion

10/20/2020

3

Interchange argument

• Suppose there is a pair of jobs i and j, with

di <= dj, and j scheduled immediately

before i. Interchanging i and j does not

increase the maximum lateness.

di djdi dj

j i ji

Proof by Bubble Sort

a4a2 a3 a1

a4a2 a3

a4a2 a3a1

a4a2 a3a1

a1

a4a2 a3a1

Determine maximum lateness

d1 d2 d3 d4

Real Proof

• There is an optimal schedule with no
inversions and no idle time.

• Let O be an optimal schedule k inversions,
we construct a new optimal schedule with
k-1 inversions

• Repeat until we have an optimal schedule
with 0 inversions

• This is the solution found by the earliest
deadline first algorithm

Result

• Earliest Deadline First algorithm

constructs a schedule that minimizes the

maximum lateness

Homework Scheduling

• How is the model unrealistic?

Extensions

• What if the objective is to minimize the
sum of the lateness?

– EDF does not work

• If the tasks have release times and
deadlines, and are non-preemptable, the
problem is NP-complete

• What about the case with release times
and deadlines where tasks are
preemptable?

10/20/2020

4

Optimal Caching

• Caching problem:

– Maintain collection of items in local memory

– Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

• If you know the sequence of requests,
what is the optimal replacement pattern?

• Note – it is rare to know what the requests
are in advance – but we still might want to
do this:
– Some specific applications, the sequence is

known
• Register allocation in code generation

– Competitive analysis, compare performance
on an online algorithm with an optimal offline
algorithm

Farthest in the future algorithm

• Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

• Sketch

• Start with Optimal Solution O

• Convert to Farthest in the Future Solution

F-F

• Look at the first place where they differ

• Convert O to evict F-F element

– There are some technicalities here to ensure

the caches have the same configuration . . .

Single Source Shortest Path

Problem
• Given a graph and a start vertex s

– Determine distance of every vertex from s

– Identify shortest paths to each vertex
• Express concisely as a “shortest paths tree”

• Each vertex has a pointer to a predecessor on
shortest path

s

v

x

u
1 2

5

3 4

s

v

x

u

1

3

3

10/20/2020

5

Construct Shortest Path Tree

from s

a

b

c
s

e

g

f

d

4

2

-3

2

1
5

4

-2
3

3

6

3

7

4
a

b

c
s

e

g

f

d

Warmup

• If P is a shortest path from s to v, and if t is

on the path P, the segment from s to t is a

shortest path between s and t

• WHY?
s

t
v

Dijkstra’s Algorithm

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

1

4

3

2

3

2

1

2

10

1

2 2

5

4

Assume all edges have non-negative cost

Simulate Dijkstra’s algorithm

(starting from s) on the graph

1

2

3

4

5

Round
Vertex

Added
s a b c d

b d

ca

1

1

1

23

4

6

1

3

4
s

