

Announcements

- Today's lecture

 Kleinberg-Tardos, 4.3, 4.4

 Wednesday and Friday
 - Kleinberg-Tardos, 4.4, 4.5

- Pro:
 - Feedback on understanding, incentive for mastering material, complementary assessment to homework, established part of course
- Con:
 - Administrative difficulties in ensuring "exam conditions", time zones, extra work in multiple versions
- Approach:
 - Include a midterm in the homework problems, encourage students to first do midterm under exam conditions, but then redo problems under homework conditions. Count as a regular assignment.

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- Today's problems (Sections 4.2, 4.3)
 - Homework Scheduling
 - Optimal Caching
- · Start Dijkstra's shortest paths algorithm

Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order
- Can I get all my work turned in on time?
- If I can't get everything in, I want to minimize the maximum lateness

Scheduling tasks

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
 Lateness: L_i = f_i d_i if f_i >= d_i

Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

- Suppose the jobs are ordered by deadlines, $d_1 \le d_2 \le \ldots \le d_n$
- A schedule has an *inversion* if job j is scheduled before i where j > i
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

• Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling

• How is the model unrealistic?

Extensions

- What if the objective is to minimize the sum of the lateness?
 - EDF does not work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

- · Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - Register allocation in code generation
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm Discard element used farthest in the future A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

- Sketch
- · Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- · Look at the first place where they differ
- · Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

Single Source Shortest Path Problem

- Given a graph and a start vertex s
 - Determine distance of every vertex from $\ensuremath{\mathsf{s}}$
 - Identify shortest paths to each vertex
 Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path

