

Richard Anderson
Autumn 2020
Lecture 10 - Greedy Algorithms III

Midterm

- Pro:
- Feedback on understanding, incentive for mastering material, complementary assessment to homework, established part of course
- Con:
- Administrative difficulties in ensuring "exam conditions", time zones, extra work in multiple versions
- Approach:
- Include a midterm in the homework problems, encourage students to first do midterm under exam conditions, but then redo problems under homework conditions. Count as a regular assignment.

Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order
- Can I get all my work turned in on time?
- If I can't get everything in, I want to minimize the maximum lateness

Announcements

- Today's lecture
-Kleinberg-Tardos, 4.3, 4.4
- Wednesday and Friday
- Kleinberg-Tardos, 4.4, 4.5

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- Today's problems (Sections 4.2, 4.3)
- Homework Scheduling
- Optimal Caching
- Start Dijkstra's shortest paths algorithm

Scheduling tasks

- Each task has a length t_{i} and a deadline d_{i}
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
- Lateness: $L_{i}=f_{i}-d_{i}$ if $f_{i}>=d_{i}$

Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

Analysis

- Suppose the jobs are ordered by deadlines, $d_{1}<=d_{2}<=\ldots<=d_{n}$
- A schedule has an inversion if job j is scheduled before i where $\mathrm{j}>\mathrm{i}$
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

Lemma: There is an optimal schedule with no idle time

- It doesn't hurt to start your homework early!
- Note on proof techniques
- This type of can be important for keeping proofs clean
- It allows us to make a simplifying assumption for the remainder of the proof

Lemma

- If there is an inversion i, j, there is a pair of adjacent jobs i^{\prime}, j' which form an inversion

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Interchange argument

- Suppose there is a pair of jobs i and j, with $\mathrm{d}_{\mathrm{i}}<=\mathrm{d}_{\mathrm{j}}$, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.

Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k -1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

- Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Extensions

- What if the objective is to minimize the sum of the lateness?
- EDF does not work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

- Caching problem:
- Maintain collection of items in local memory
- Minimize number of items fetched

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note - it is rare to know what the requests are in advance - but we still might want to do this:
- Some specific applications, the sequence is known
- Register allocation in code generation
- Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Farthest in the future algorithm

- Discard element used farthest in the future

\square A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
- There are some technicalities here to ensure the caches have the same configuration..

Single Source Shortest Path Problem

- Given a graph and a start vertex s
- Determine distance of every vertex from s
- Identify shortest paths to each vertex
- Express concisely as a "shortest paths tree"
- Each vertex has a pointer to a predecessor on shortest path

Assume all edges have non-negative cost

Dijkstra's Algorithm

$S=\{ \} ; d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S ! $=\mathrm{V}$
Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v $\mathrm{d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))$

Warmup

- If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t
- WHY? ${ }^{\text {s }}$

