

Richard Anderson

Autumn 2020

Lecture 10 – Greedy Algorithms III

MATT GROENING

Announcements

- Today's lecture
 - Kleinberg-Tardos, 4.3, 4.4
- Wednesday and Friday
 - Kleinberg-Tardos, 4.4, 4.5

Midterm

• Pro:

 Feedback on understanding, incentive for mastering material, complementary assessment to homework, established part of course

• Con:

 Administrative difficulties in ensuring "exam conditions", time zones, extra work in multiple versions

Approach:

 Include a midterm in the homework problems, encourage students to first do midterm under exam conditions, but then redo problems under homework conditions. Count as a regular assignment.

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- Today's problems (Sections 4.2, 4.3)
 - Homework Scheduling
 - Optimal Caching
- Start Dijkstra's shortest paths algorithm

Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order

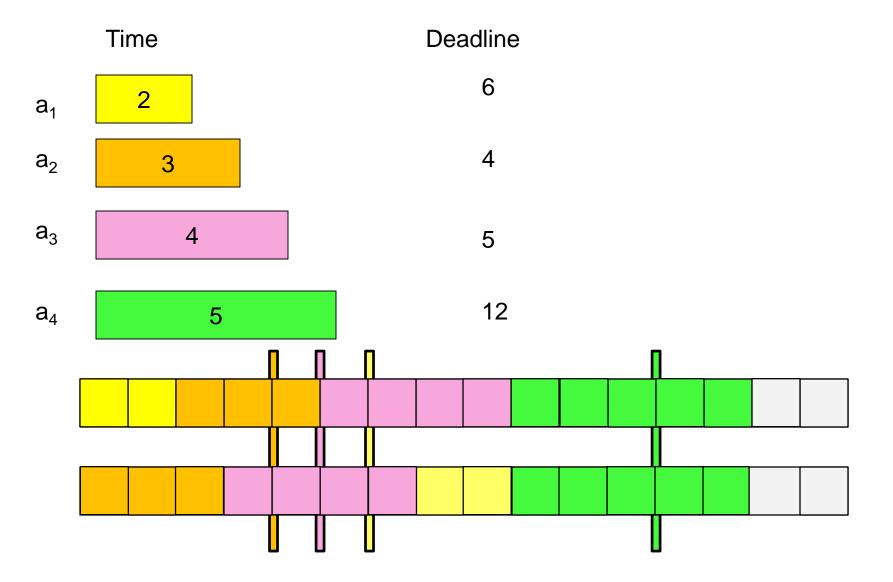
- Can I get all my work turned in on time?
- If I can't get everything in, I want to minimize the maximum lateness

Scheduling tasks

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed

- Goal minimize maximum lateness
 - Lateness: $L_i = f_i d_i$ if $f_i >= d_i$

Determine the minimum lateness



Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline

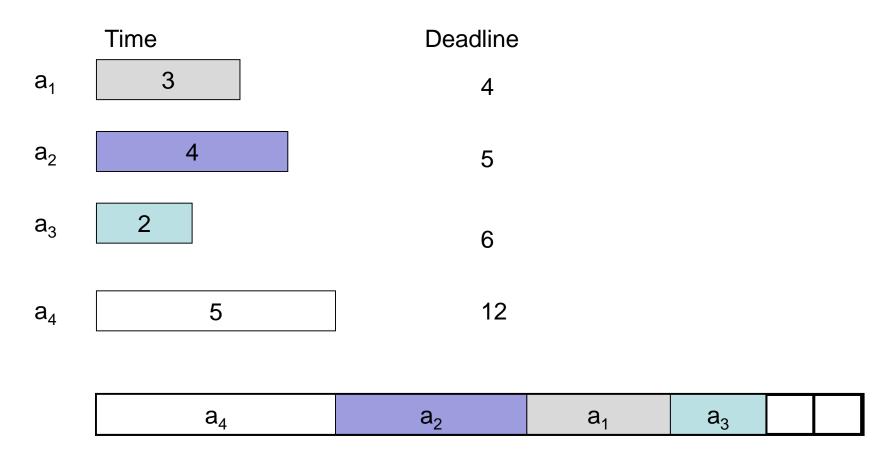
This algorithm is optimal

Analysis

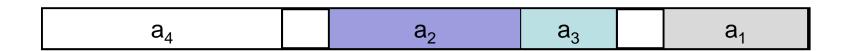
- Suppose the jobs are ordered by deadlines,
 d₁ <= d₂ <= . . . <= d_n
- A schedule has an inversion if job j is scheduled before i where j > i

- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

List the inversions



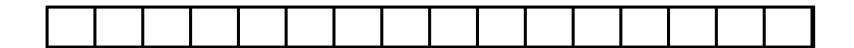
Lemma: There is an optimal schedule with no idle time



- It doesn't hurt to start your homework early!
- Note on proof techniques
 - This type of can be important for keeping proofs clean
 - It allows us to make a simplifying assumption for the remainder of the proof

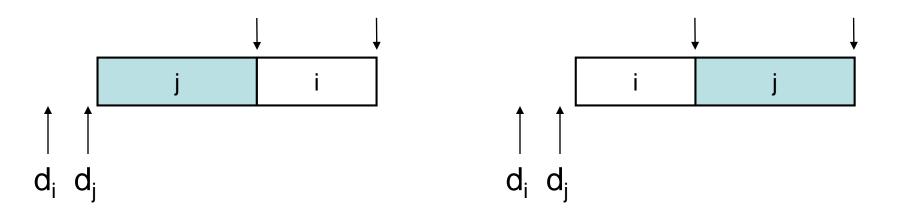
Lemma

• If there is an inversion i, j, there is a pair of adjacent jobs i', j' which form an inversion



Interchange argument

 Suppose there is a pair of jobs i and j, with d_i <= d_j, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.



Proof by Bubble Sort

d_1	d ₂	d_3				d_4		
a_2			a_4		a_3		a ₁	
a_2			a_4		a ₁		a_3	
a_2		a ₁			a_4		a_3	
a_2		a ₁		a_3		a_4		
a ₁	а	2		a_3		a_4		

Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

 Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling

How is the model unrealistic?

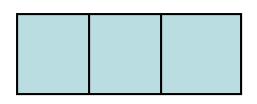
Extensions

- What if the objective is to minimize the sum of the lateness?
 - EDF does not work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

- Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example



A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - Register allocation in code generation
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

Discard element used farthest in the future

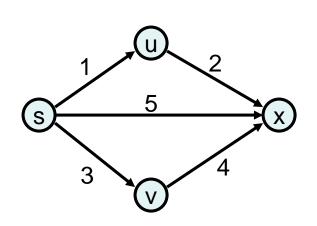
A, B, C, A, C, D, C, B, C, A, D

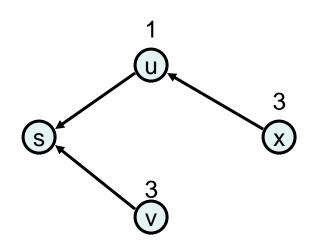
Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution
 F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

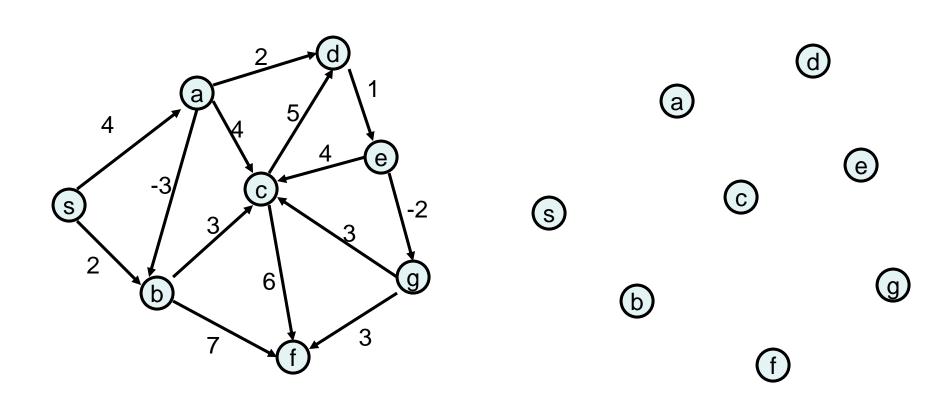
Single Source Shortest Path Problem

- Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path



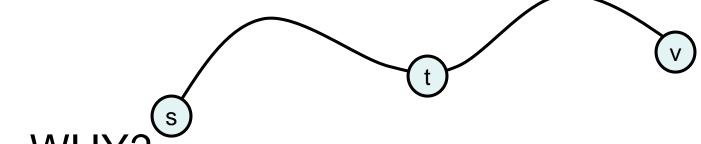


Construct Shortest Path Tree from s



Warmup

 If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t



• WHY?

Assume all edges have non-negative cost

Dijkstra's Algorithm

```
S = \{ \}; \quad d[s] = 0; \quad d[v] = infinity for v != s

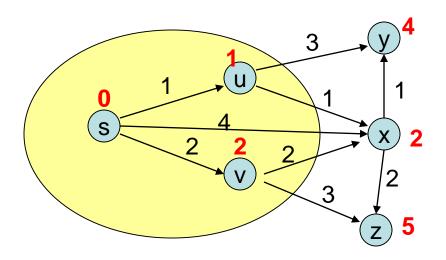
While S != V

Choose v in V-S with minimum d[v]

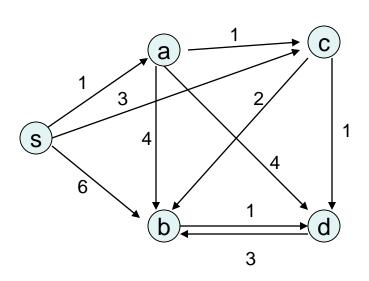
Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
```



Simulate Dijkstra's algorithm (starting from s) on the graph



F	Round	Vertex Added	s	а	b	С	d
	1						
	2						
	3						
	4						
	5						