
10/18/2020

1

CSE 417

Algorithms and Complexity

Richard Anderson

Autumn 2020

Lecture 9 – Greedy Algorithms II

Announcements

• Today’s lecture

– Kleinberg-Tardos, 4.2, 4.3

• Wednesday and Friday

– Kleinberg-Tardos, 4.4, 4.5

Greedy Algorithms

• Solve problems with the simplest possible

algorithm

• The hard part: showing that something

simple actually works

• Today’s problems (Sections 4.2, 4.3)

– Multiprocessor Interval Scheduling

– Graph Coloring

– Homework Scheduling

– Optimal Caching

• Tasks occur at fixed times, single

processor

• Maximize number of tasks completed

• Earliest finish time first algorithm optimal

• Optimality proof: stay ahead lemma

– Mathematical induction is the technical tool

Interval Scheduling

Scheduling all intervals with

multiple processors
• Minimize number of processors to

schedule all intervals

How many processors are needed

for this example?

1 2

3 4

5 6

10/18/2020

2

Prove that you cannot schedule this set

of intervals with two processors

Depth: maximum number of

intervals active

Algorithm

• Sort by start times

• Suppose maximum depth is d, create d

slots

• Schedule items in increasing order, assign

each item to an open slot

• Correctness proof: When we reach an

item, we always have an open slot

Greedy Graph Coloring

Theorem: An undirected graph with maximum

degree K can be colored with K+1 colors

Coloring Algorithm, Version 1

Let k be the largest vertex degree

Choose k+1 colors

for each vertex v

Color[v] = uncolored

for each vertex v

Let c be a color not used in N[v]

Color[v] = c

Coloring Algorithm, Version 2

for each vertex v

Color[v] = uncolored

for each vertex v

Let c be the smallest color not used in N[v]

Color[v] = c

7 8

9 10

11 12

10/18/2020

3

Homework Scheduling

• Tasks to perform

• Deadlines on the tasks

• Freedom to schedule tasks in any order

• Can I get all my work turned in on time?

• If I can’t get everything in, I want to

minimize the maximum lateness

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness: Li = fi – di if fi >= di

Example

2

3

2

4

DeadlineTime

2 3

23

Lateness 1

Lateness 3

a1

a2

Determine the minimum lateness

2

3

4

5

6

4

5

12

DeadlineTime

a1

a2

a3

a4

Greedy Algorithm

• Earliest deadline first

• Order jobs by deadline

• This algorithm is optimal

Analysis

• Suppose the jobs are ordered by deadlines,

d1 <= d2 <= . . . <= dn

• A schedule has an inversion if job j is scheduled

before i where j > i

• The schedule A computed by the greedy

algorithm has no inversions.

• Let O be the optimal schedule, we want to show

that A has the same maximum lateness as O

13 14

15 16

17 18

10/18/2020

4

List the inversions

2

3

4

5

4

5

6

12

DeadlineTime

a1

a2

a3

a4

a4 a2 a3a1

Lemma: There is an optimal

schedule with no idle time

• It doesn’t hurt to start your homework early!

• Note on proof techniques

– This type of can be important for keeping proofs clean

– It allows us to make a simplifying assumption for the

remainder of the proof

a4 a2 a3 a1

Lemma

• If there is an inversion i, j, there is a pair of

adjacent jobs i’, j’ which form an inversion

Interchange argument

• Suppose there is a pair of jobs i and j, with

di <= dj, and j scheduled immediately

before i. Interchanging i and j does not

increase the maximum lateness.

di djdi dj

j i ji

Proof by Bubble Sort

a4a2 a3 a1

a4a2 a3

a4a2 a3a1

a4a2 a3a1

a1

a4a2 a3a1

Determine maximum lateness

d1 d2 d3 d4

Real Proof

• There is an optimal schedule with no
inversions and no idle time.

• Let O be an optimal schedule k inversions,
we construct a new optimal schedule with
k-1 inversions

• Repeat until we have an optimal schedule
with 0 inversions

• This is the solution found by the earliest
deadline first algorithm

19 20

21 22

23 24

10/18/2020

5

Result

• Earliest Deadline First algorithm

constructs a schedule that minimizes the

maximum lateness

Homework Scheduling

• How is the model unrealistic?

Extensions

• What if the objective is to minimize the
sum of the lateness?

– EDF does not work

• If the tasks have release times and
deadlines, and are non-preemptable, the
problem is NP-complete

• What about the case with release times
and deadlines where tasks are
preemptable?

Optimal Caching

• Caching problem:

– Maintain collection of items in local memory

– Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

• If you know the sequence of requests,
what is the optimal replacement pattern?

• Note – it is rare to know what the requests
are in advance – but we still might want to
do this:
– Some specific applications, the sequence is

known
• Register allocation in code generation

– Competitive analysis, compare performance
on an online algorithm with an optimal offline
algorithm

25 26

27 28

29 30

10/18/2020

6

Farthest in the future algorithm

• Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

• Sketch

• Start with Optimal Solution O

• Convert to Farthest in the Future Solution

F-F

• Look at the first place where they differ

• Convert O to evict F-F element

– There are some technicalities here to ensure

the caches have the same configuration . . .

Later this week

31 32

33

