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CSE 417

Algorithms and Complexity

Richard Anderson

Autumn 2020

Lecture 9 – Greedy Algorithms II

Announcements

• Today’s lecture

– Kleinberg-Tardos,  4.2, 4.3

• Wednesday and Friday

– Kleinberg-Tardos, 4.4, 4.5 

Greedy Algorithms

• Solve problems with the simplest possible 

algorithm

• The hard part: showing that something 

simple actually works

• Today’s problems (Sections 4.2, 4.3)

– Multiprocessor Interval Scheduling

– Graph Coloring

– Homework Scheduling

– Optimal Caching

• Tasks occur at fixed times, single 

processor

• Maximize number of tasks completed

• Earliest finish time first algorithm optimal

• Optimality proof: stay ahead lemma

– Mathematical induction is the technical tool

Interval Scheduling

Scheduling all intervals with 

multiple processors
• Minimize number of processors to 

schedule all intervals

How many processors are needed 

for this example?
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Prove that you cannot schedule this set 

of intervals with two processors

Depth: maximum number of 

intervals active 

Algorithm

• Sort by start times

• Suppose maximum depth is d, create d 

slots

• Schedule items in increasing order, assign 

each item to an open slot

• Correctness proof: When we reach an 

item, we always have an open slot

Greedy Graph Coloring

Theorem:  An undirected graph with maximum 

degree K can be colored with K+1 colors

Coloring Algorithm, Version 1

Let k be the largest vertex degree

Choose k+1 colors

for each vertex v

Color[v] = uncolored

for each vertex v

Let c be a color not used in N[v]

Color[v] = c

Coloring Algorithm, Version 2

for each vertex v

Color[v] = uncolored

for each vertex v

Let c be the smallest color not used in N[v]

Color[v] = c
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Homework Scheduling

• Tasks to perform

• Deadlines on the tasks

• Freedom to schedule tasks in any order

• Can I get all my work turned in on time?

• If I can’t get everything in, I want to 

minimize the maximum lateness

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness:   Li = fi – di if fi >= di

Example
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Determine the minimum lateness
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Greedy Algorithm

• Earliest deadline first

• Order jobs by deadline

• This algorithm is optimal

Analysis

• Suppose the jobs are ordered by deadlines,     

d1 <= d2 <= . . . <= dn

• A schedule has an inversion if job j is scheduled 

before i where j > i

• The schedule A computed by the greedy 

algorithm has no inversions.

• Let O be the optimal schedule, we want to show 

that A has the same maximum lateness as O
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List the inversions
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Lemma: There is an optimal 

schedule with no idle time

• It doesn’t hurt to start your homework early!

• Note on proof techniques

– This type of can be important for keeping proofs clean

– It allows us to make a simplifying assumption for the 

remainder of the proof

a4 a2 a3 a1

Lemma

• If there is an inversion i, j, there is a pair of 

adjacent jobs i’, j’ which form an inversion

Interchange argument

• Suppose there is a pair of jobs i and j, with  

di <= dj,  and j scheduled immediately 

before i.  Interchanging i and j does not 

increase the maximum lateness.  

di djdi dj

j i ji

Proof by Bubble Sort

a4a2 a3 a1

a4a2 a3

a4a2 a3a1

a4a2 a3a1

a1

a4a2 a3a1

Determine maximum lateness

d1 d2 d3 d4

Real Proof

• There is an optimal schedule with no 
inversions and no idle time.

• Let O be an optimal schedule k inversions, 
we construct a new optimal schedule with 
k-1 inversions

• Repeat until we have an optimal schedule 
with 0 inversions

• This is the solution found by the earliest 
deadline first algorithm
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Result

• Earliest Deadline First algorithm 

constructs a schedule that minimizes the 

maximum lateness

Homework Scheduling

• How is the model unrealistic?

Extensions

• What if the objective is to minimize the 
sum of the lateness?

– EDF does not work

• If the tasks have release times and 
deadlines, and are non-preemptable, the 
problem is NP-complete

• What about the case with release times 
and deadlines where tasks are 
preemptable?

Optimal Caching

• Caching problem:

– Maintain collection of items in local memory

– Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

• If you know the sequence of requests, 
what is the optimal replacement pattern?

• Note – it is rare to know what the requests 
are in advance – but we still might want to 
do this:
– Some specific applications, the sequence is 

known
• Register allocation in code generation

– Competitive analysis, compare performance 
on an online algorithm with an optimal offline 
algorithm

25 26

27 28

29 30



10/18/2020

6

Farthest in the future algorithm

• Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

• Sketch

• Start with Optimal Solution O

• Convert to Farthest in the Future Solution 

F-F

• Look at the first place where they differ

• Convert O to evict F-F element

– There are some technicalities here to ensure 

the caches have the same configuration . . .

Later this week
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