
CSE 417

Algorithms and Complexity

Richard Anderson

Autumn 2020

Lecture 8

Announcements

• Reading

– For today, sections 4.1, 4.2,

– For next week sections 4.4, 4.5, 4.7, 4.8

• Homework 3 is available

– Random Graphs

Stable Matching Results

• Averages of 5 runs

• Much better for M than W

• Why is it better for M?

• What is the growth of m-

rank and w-rank as a

function of n?

n m-rank w-rank
500 5.10 98.05

500 7.52 66.95

500 8.57 58.18

500 6.32 75.87

500 5.25 90.73

500 6.55 77.95

1000 6.80 146.93

1000 6.50 154.71

1000 7.14 133.53

1000 7.44 128.96

1000 7.36 137.85

1000 7.04 140.40

2000 7.83 257.79

2000 7.50 263.78

2000 11.42 175.17

2000 7.16 274.76

2000 7.54 261.60

2000 8.29 246.62

Coupon Collector Problem

• n types of coupons

• Each round you receive a
random coupon

• How many rounds until
you have received all
types of coupons

• pi is the probability of
getting a new coupon
after i-1 have been
collected

• ti is the time to receive
the i-th type of coupon
after i-1 have been
received

Stable Matching and Coupon

Collecting
• Assume random

preference lists

• Runtime of algorithm
determined by number
of proposals until all w’s
are matched

• Each proposal can be
viewed1 as asking a
random w

• Number of proposals
corresponds to number
of steps in coupon
collector problem

1There are some technicalities here that are being ignored

Highlight from last lecture:

Topological Sort Algorithm
While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

E

F

D

A

C

B

K

J
G

H
I

L

1

2

43

7

5

8

9

6

10

12

11

Greedy Algorithms

Greedy Algorithms

• Solve problems with the simplest possible

algorithm

• The hard part: showing that something

simple actually works

• Pseudo-definition

– An algorithm is Greedy if it builds its solution

by adding elements one at a time using a

simple rule

Scheduling Theory

• Tasks

– Processing requirements, release times,

deadlines

• Processors

• Precedence constraints

• Objective function

– Jobs scheduled, lateness, total execution time

• Tasks occur at fixed times

• Single processor

• Maximize number of tasks completed

• Tasks {1, 2, . . . N}

• Start and finish times, s(i), f(i)

Interval Scheduling

What is the largest solution?

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A

is the rule determining the greedy algorithm

I = { }

While (T is not empty)

Select a task t from T by a rule A

Add t to I

Remove t and all tasks incompatible with t from T

Simulate the greedy algorithm for

each of these heuristics

Schedule earliest starting task

Schedule shortest available task

Schedule task with fewest conflicting tasks

Greedy solution based on earliest

finishing time

Example 1

Example 2

Example 3

Theorem: Earliest Finish Algorithm

is Optimal

• Key idea: Earliest Finish Algorithm stays

ahead

• Let A = {i1, . . ., ik} be the set of tasks found

by EFA in increasing order of finish times

• Let B = {j1, . . ., jm} be the set of tasks

found by a different algorithm in increasing

order of finish times

• Show that for r<= min(k, m), f(ir) <= f(jr)

Stay ahead lemma

• A always stays ahead of B, f(ir) <= f(jr)

• Induction argument

– f(i1) <= f(j1)

– If f(ir-1) <= f(jr-1) then f(ir) <= f(jr)

Completing the proof

• Let A = {i1, . . ., ik} be the set of tasks found by
EFA in increasing order of finish times

• Let O = {j1, . . ., jm} be the set of tasks found by
an optimal algorithm in increasing order of finish
times

• If k < m, then the Earliest Finish Algorithm
stopped before it ran out of tasks

Scheduling all intervals

• Minimize number of processors to

schedule all intervals

How many processors are needed

for this example?

Prove that you cannot schedule this set

of intervals with two processors

Depth: maximum number of

intervals active

Algorithm

• Sort by start times

• Suppose maximum depth is d, create d

slots

• Schedule items in increasing order, assign

each item to an open slot

• Correctness proof: When we reach an

item, we always have an open slot

Greedy Graph Coloring

Theorem: An undirected graph with maximum

degree K can be colored with K+1 colors

Coloring Algorithm, Version 1

Let k be the largest vertex degree

Choose k colors

for each vertex v

Color[v] = uncolored

for each vertex v

Let c be a color not used in N[v]

Color[v] = c

Coloring Algorithm, Version 2

for each vertex v

Color[v] = uncolored

for each vertex v

Let c be the smallest color not used in N[v]

Color[v] = c

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness = fi – di if fi >= di

Example

2

3

2

4

DeadlineTime

2 3

23

Lateness 1

Lateness 3

Determine the minimum lateness

2

3

4

5

6

4

5

12

DeadlineTime

