CSE 417 Algorithms and Complexity

Graph Algorithms Autumn 2020 Lecture 7

Graph Connectivity

- An undirected graph is connected if there is a path between every pair of vertices x and y
- A connected component is a maximal connected subset of vertices

Connected Components

• Undirected Graphs

Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

• A directed graph is strongly connected if for every pair of vertices x and y, there is a path from x to y, and there is a path from y to x

Testing if a graph is strongly connected

• Pick a vertex x

$$-S_1 = \{ y \mid \text{path from } x \text{ to } y \}$$

$$-S_2 = \{ y \mid path from y to x \}$$

- If $|S_1| = n$ and $|S_2| = n$ then strongly connected

 Compute S₂ with a "Backwards BFS" – Reverse edges and compute a BFS

Strongly Connected Components

A set of vertices C is a strongly connected component if C is a maximal strongly connected subgraph

Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time
- S₁ = { y | path from v to y }
- S₂ = { y | path from y to v}
- Scc containing v is S₁ Intersect S₂

Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
 - Pick a vertex v_1 , if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each

Random Graphs

- What is a random graph?
- Choose edges at random
- Interesting model of certain phenomena
- Mathematical study
- Useful inputs for graph algorithms

Model of Random Graphs

- Undirected Graphs
 - Random Graph with n vertices and m edges, G_m
 - Random Graph with n vertices where each edge has probability p, G_p
 - Models are similar when p = 2m / (n * (n 1))

```
for (int i = 0; i < n - 1; i++)
    for (int j = i + 1; j < n; j++)
        if (random.NextDouble() < p)
            AddEdge(i, j);</pre>
```

Stable Matching Results

m rank

n

2000

8.29

w-rank

98.05 66.95 58.18 75.87 90.73 77.95

146.93 154.71 133.53 128.96 137.85 140.40

257.79 263.78 175.17 274.76 261.60

246.62

	n	m-rank
 Averages of 5 runs 	500	5.10
-	500	7.52
 Much better for M than W 	500	8.57
	500	6.32
 Why is it better for M? 	500	5.25
	500	6.55
	1000	6.80
	1000	6.50
	1000	7.14
	1000	7.44
• M/bat is the growth of m	1000	7.36
 What is the growth of m- 	1000	7.04
rank and w-rank as a		
Idlik allu W-Idlik as a	2000	7.83
function of n?	2000	7.50
	2000	11.42
	2000	7.16
	2000	7.54

Coupon Collector Problem

- n types of coupons
- Each round you receive a random coupon
- How many rounds until you have received all types of coupons
- p_i is the probability of getting a new coupon after i-1 have been collected
- t_i is the time to receive the i-th type of coupon after i-1 have been received

$$p_i=rac{n-(i-1)}{n}=rac{n-i+1}{n}$$

 t_i has geometric distribution with expectation

$$egin{aligned} rac{1}{p_i} &= rac{n}{n-i+1} \ \mathrm{E}(T) &= \mathrm{E}(t_1+t_2+\dots+t_n) \ &= \mathrm{E}(t_1)+\mathrm{E}(t_2)+\dots+\mathrm{E}(t_n) \ &= rac{1}{p_1}+rac{1}{p_2}+\dots+rac{1}{p_n} \ &= rac{n}{n}+rac{n}{n-1}+\dots+rac{n}{1} \ &= n\cdot\left(rac{1}{1}+rac{1}{2}+\dots+rac{1}{n}
ight) \ &= n\cdot H_n. \end{aligned}$$

Stable Matching and Coupon Collecting

- Assume random preference lists
- Runtime of algorithm determined by number of proposals until all w's are matched
- Each proposal can be viewed¹ as asking a random w
- Number of proposals corresponds to number of steps in coupon collector problem