CSE 417 Algorithms and Complexity

Graph Algorithms
Autumn 2020
Lecture 7
Graph Connectivity

• An undirected graph is connected if there is a path between every pair of vertices x and y

• A connected component is a maximal connected subset of vertices
Connected Components

• Undirected Graphs
Computing Connected Components in $O(n+m)$ time

• A search algorithm from a vertex v can find all vertices in v’s component

• While there is an unvisited vertex v, search from v to find a new component
Directed Graphs

• A directed graph is strongly connected if for every pair of vertices x and y, there is a path from x to y, and there is a path from y to x.

![Strongly Connected](image1)

![Not Strongly Connected](image2)
Testing if a graph is strongly connected

• Pick a vertex x

 – $S_1 = \{ y \mid \text{path from } x \text{ to } y \}$

 – $S_2 = \{ y \mid \text{path from } y \text{ to } x \}$

 – If $|S_1| = n$ and $|S_2| = n$ then strongly connected

• Compute S_2 with a “Backwards BFS”

 – Reverse edges and compute a BFS
Strongly Connected Components

A set of vertices C is a strongly connected component if C is a maximal strongly connected subgraph.
Strongly connected components can be found in $O(n+m)$ time

- But it’s tricky!
- Simpler problem: given a vertex v, compute the vertices in v’s SCC in $O(n+m)$ time

- $S_1 = \{ y \mid \text{path from } v \text{ to } y \}$
- $S_2 = \{ y \mid \text{path from } y \text{ to } v \}$
- SCC containing v is S_1 Intersect S_2
Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks
Find a topological order for the following graph.
If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles
Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

• Proof:
 – Pick a vertex v_1, if it has in-degree 0 then done
 – If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 – If not, let (v_3, v_2) be an edge . . .
 – If this process continues for more than n steps, we have a repeated vertex, so we have a cycle
Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges
Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each
Random Graphs

• What is a random graph?
• Choose edges at random
• Interesting model of certain phenomena
• Mathematical study
• Useful inputs for graph algorithms
Model of Random Graphs

- Undirected Graphs
 - Random Graph with n vertices and m edges, \(G_m \)
 - Random Graph with n vertices where each edge has probability p, \(G_p \)
 - Models are similar when \(p = \frac{2m}{n \times (n - 1)} \)

```c
for (int i = 0; i < n - 1; i++)
    for (int j = i + 1; j < n; j++)
        if (random.NextDouble() < p)
            AddEdge(i, j);
```
Stable Matching Results

- Averages of 5 runs
- Much better for M than W
- Why is it better for M?

- What is the growth of m-rank and w-rank as a function of n?

<table>
<thead>
<tr>
<th>n</th>
<th>m-rank</th>
<th>w-rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>5.10</td>
<td>98.05</td>
</tr>
<tr>
<td>500</td>
<td>7.52</td>
<td>66.95</td>
</tr>
<tr>
<td>500</td>
<td>8.57</td>
<td>58.18</td>
</tr>
<tr>
<td>500</td>
<td>6.32</td>
<td>75.87</td>
</tr>
<tr>
<td>500</td>
<td>5.25</td>
<td>90.73</td>
</tr>
<tr>
<td>500</td>
<td>6.55</td>
<td>77.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>m-rank</th>
<th>w-rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>6.80</td>
<td>146.93</td>
</tr>
<tr>
<td>1000</td>
<td>6.50</td>
<td>154.71</td>
</tr>
<tr>
<td>1000</td>
<td>7.14</td>
<td>133.53</td>
</tr>
<tr>
<td>1000</td>
<td>7.44</td>
<td>128.96</td>
</tr>
<tr>
<td>1000</td>
<td>7.36</td>
<td>137.85</td>
</tr>
<tr>
<td>1000</td>
<td>7.04</td>
<td>140.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>m-rank</th>
<th>w-rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>7.83</td>
<td>257.79</td>
</tr>
<tr>
<td>2000</td>
<td>7.50</td>
<td>263.78</td>
</tr>
<tr>
<td>2000</td>
<td>11.42</td>
<td>175.17</td>
</tr>
<tr>
<td>2000</td>
<td>7.16</td>
<td>274.76</td>
</tr>
<tr>
<td>2000</td>
<td>7.54</td>
<td>261.60</td>
</tr>
<tr>
<td>2000</td>
<td>8.29</td>
<td>246.62</td>
</tr>
</tbody>
</table>
Coupon Collector Problem

- n types of coupons
- Each round you receive a random coupon
- How many rounds until you have received all types of coupons
- p_i is the probability of getting a new coupon after $i-1$ have been collected
- t_i is the time to receive the i-th type of coupon after $i-1$ have been received

\[
p_i = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}
\]

t_i has geometric distribution with expectation

\[
\frac{1}{p_i} = \frac{n}{n - i + 1}
\]

\[
E(T) = E(t_1 + t_2 + \cdots + t_n)
= E(t_1) + E(t_2) + \cdots + E(t_n)
= \frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_n}
= \frac{n}{n} + \frac{n}{n-1} + \cdots + \frac{n}{1}
= n \cdot \left(\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n} \right)
= n \cdot H_n.
\]

\[
E(T) = n \cdot H_n = n \log n + \gamma n + \frac{1}{2} + O(1/n).
\]
Stable Matching and Coupon Collecting

• Assume random preference lists
• Runtime of algorithm determined by number of proposals until all w’s are matched
• Each proposal can be viewed\(^1\) as asking a random w
• Number of proposals corresponds to number of steps in coupon collector problem

\(^1\)There are some technicalities here that are being ignored