Announcements

• Reading
 – Chapter 3
 – Start on Chapter 4

Graph Theory

• $G = (V, E)$
 – V: vertices, $|V| = n$
 – E: edges, $|E| = m$

• Undirected graphs
 – Edges sets of two vertices (u, v)

• Directed graphs
 – Edges ordered pairs (u, v)

• Many other flavors
 – Edge / vertices weights
 – Parallel edges
 – Self loops

• Path: $v_1, v_2, ..., v_k$, with $(v_i, v_{i+1}) \in E$
 – Simple Path
 – Cycle
 – Simple Cycle

• Neighborhood
 – $N(v)$

• Distance

• Connectivity
 – Undirected
 – Directed (strong connectivity)

• Trees
 – Rooted
 – Unrooted

Graph Representation

Graph search

• Find a path from s to t

S = {s}
while S is not empty
 u = Select(S)
 visit u
 foreach v in N(u)
 if v is unvisited
 Add(S, v)
 Pred[v] = u
 if (v = t) then path found
Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .

Breadth First Search

- Build a BFS tree from s
 \[\text{Q} = \{s\} \]
 \[\text{Level}(s) = 1; \]
 \[\text{while} \ \text{Q is not empty} \]
 \[u = \text{Q.Dequeue}(); \]
 \[\text{visit } u \]
 \[\text{foreach } v \text{ in } \text{N}(u) \]
 \[\text{if } v \text{ is unvisited} \]
 \[\text{Q.Enqueue}(v) \]
 \[\text{Pred}(v) = u \]
 \[\text{Level}(v) = \text{Level}(u) + 1 \]

Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into \(V_1, V_2 \) such that all edges go between \(V_1 \) and \(V_2 \)
- A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite
Theorem: A graph is bipartite if and only if it has no odd cycles.

Lemma 1
- If a graph contains an odd cycle, it is not bipartite.

Lemma 2
- If a BFS tree has an intra-level edge, then the graph has an odd length cycle.

Lemma 3
- If a graph has no odd length cycles, then it is bipartite.

Graph Search
- Data structure for next vertex to visit determines search order.

Graph Search
- Breadth First Search
 - $S = \{s\}$
 - while S is not empty
 - $u = \text{Dequeue}(S)$
 - if u is unvisited
 - visit u
 - foreach v in $N(u)$
 - Enqueue(S, v)

- Depth First Search
 - $S = \{s\}$
 - while S is not empty
 - $u = \text{Pop}(S)$
 - if u is unvisited
 - visit u
 - foreach v in $N(u)$
 - Push(S, v)
Breadth First Search

• All edges go between vertices on the same layer or adjacent layers

Depth First Search

• Each edge goes between vertices on the same branch
• No cross edges

Connected Components

• Undirected Graphs

Computing Connected Components in O(n+m) time

• A search algorithm from a vertex v can find all vertices in v's component
• While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

• A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components
Strongly connected components can be found in $O(n+m)$ time

- But it’s tricky!
- Simpler problem: given a vertex v, compute the vertices in v’s scc in $O(n+m)$ time

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

```plaintext
A - E - H - I
  |    |
  D - G - J
  |
  B - F - K
  |
  L
```

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- **Proof:**
 - Pick a vertex v_1, if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_p, v_q) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

- Output vertex v
- Delete the vertex v and all out going edges
Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0
• Each vertex keeps track of its in-degree
• Update in-degrees and list when edges are removed
• m edge removals at O(1) cost each