CSE 421 Algorithms and Complexity

Graphs and Graph Algorithms Autumn 2020 Lecture 6

Announcements

- Reading
 - Chapter 3
 - Start on Chapter 4

Graph Theory

- G = (V, E)
- V: vertices, |V|= n E: edges, |E| = m Undirected graphs
- - Edges sets of two vertices {u, v}
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

- Path: v₁, v₂, ..., v_k, with (v_i, v_{i+1}) in E
 Simple Path

 - CycleSimple Cycle
- Neighborhood
- N(v) Distance
- Connectivity
 - UndirectedDirected (strong connectivity)
- Trees
 - RootedUnrooted

Graph Representation $E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}$ **+**b → c → d →a →d 0 1 **→** a 0 0 →a→b 1 Adjacency List Incidence Matrix O(n + m) space O(n²) space

Graph search

• Find a path from s to t

 $S = \{s\}$ while S is not empty u = Select(S) visit u foreach v in N(u) if v is unvisited Add(S, v) Pred[v] = uif (v = t) then path found

Breadth first search

- · Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .

Breadth First Search

· Build a BFS tree from s

```
\label{eq:quantum_quantum} \begin{split} Q = & \{s\} \\ Level[s] = 1; \\ while Q is not empty \\ & u = Q.Dequeue() \\ & visit \ u \\ & foreach v in N(u) \\ & if \ v is \ unvisited \\ & Q.Enqueue(v) \\ & Pred[v] = u \\ & Level[v] = Level[u] + 1 \end{split}
```

Key observation

 All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_1 , V_2 such that all edges go between V_1 and V_2
- A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

• If a graph contains an odd cycle, it is not bipartite

Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

• If a graph has no odd length cycles, then it is bipartite

Graph Search

Data structure for next vertex to visit determines search order

Graph search

 $\label{eq:search} Breadth First Search $S = \{s\}$ while S is not empty $u = Dequeue(S)$ if u is unvisited $visit u$ foreach v in N(u) $$$

Enqueue(S, v)

$$\label{eq:continuous} \begin{split} \text{Depth First Search} \\ & S = \{s\} \\ & \text{while S is not empty} \\ & u = \text{Pop(S)} \\ & \text{if u is unvisited} \\ & \text{visit u} \\ & \text{foreach v in N(u)} \\ & \text{Push(S, v)} \end{split}$$

Breadth First Search

 All edges go between vertices on the same layer or adjacent layers

Depth First Search

- Each edge goes between/ vertices on the same branch
- No cross edges

Connected Components

Undirected Graphs

Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

 A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components

Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time

Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
 - Pick a vertex v₁, if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm While there exists a vertex v with in-degree 0 Output vertex v Delete the vertex v and all out going edges

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each