CSE 421
Algorithms and Complexity

Graphs and Graph Algorithms
Autumn 2020
Lecture 6
Announcements

- Reading
 - Chapter 3
 - Start on Chapter 4
Graph Theory

- **G = (V, E)**
 - V: vertices, |V| = n
 - E: edges, |E| = m
- **Undirected graphs**
 - Edges sets of two vertices \{u, v\}
- **Directed graphs**
 - Edges ordered pairs (u, v)
- **Many other flavors**
 - Edge / vertices weights
 - Parallel edges
 - Self loops
- **Path**: \(v_1, v_2, ..., v_k \), with \((v_i, v_{i+1})\) in E
 - Simple Path
 - Cycle
 - Simple Cycle
- **Neighborhood**
 - \(N(v) \)
- **Distance**
- **Connectivity**
 - Undirected
 - Directed (strong connectivity)
- **Trees**
 - Rooted
 - Unrooted
Graph Representation

V = \{ a, b, c, d \}

E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}

Adjacency List

O(n + m) space

Incidence Matrix

O(n^2) space
Graph search

• Find a path from s to t

S = \{ s \}
while S is not empty
 u = Select(S)
 visit u
 foreach v in N(u)
 if v is unvisited
 Add(S, v)
 Pred[v] = u
 if (v = t) then path found
Graph Search
Breadth first search

• Explore vertices in layers
 – s in layer 1
 – Neighbors of s in layer 2
 – Neighbors of layer 2 in layer 3 . . .
Breadth First Search

• Build a BFS tree from s

\[
Q = \{s\} \\
\text{Level}[s] = 1; \\
\text{while } Q \text{ is not empty} \\
\quad u = Q.\text{Dequeue}() \\
\quad \text{visit } u \\
\quad \text{foreach } v \text{ in } N(u) \\
\quad \quad \text{if } v \text{ is unvisited} \\
\quad \quad \quad Q.\text{Enqueue}(v) \\
\quad \quad \quad \text{Pred}[v] = u \\
\quad \quad \text{Level}[v] = \text{Level}[u] + 1
\]
Key observation

• All edges go between vertices on the same layer or adjacent layers
Bipartite Graphs

• A graph V is bipartite if V can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2

• A graph is bipartite if it can be two colored
Can this graph be two colored?
Algorithm

• Run BFS
• Color odd layers red, even layers blue
• If no edges between the same layer, the graph is bipartite
• If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite
Theorem: A graph is bipartite if and only if it has no odd cycles
Lemma 1

• If a graph contains an odd cycle, it is not bipartite
Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level
Lemma 3

• If a graph has no odd length cycles, then it is bipartite
Graph Search

- Data structure for next vertex to visit determines search order
Graph search

Breadth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Dequeue}(S) \]

if u is unvisited

visit u

foreach \(v \) in \(N(u) \)

Enqueue(S, v)

Depth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Pop}(S) \]

if u is unvisited

visit u

foreach \(v \) in \(N(u) \)

Push(S, v)
Breadth First Search

- All edges go between vertices on the same layer or adjacent layers
Depth First Search

- Each edge goes between vertices on the same branch
- No cross edges
Connected Components

- Undirected Graphs
Computing Connected Components in $O(n+m)$ time

- A search algorithm from a vertex v can find all vertices in v’s component
- While there is an unvisited vertex v, search from v to find a new component
Directed Graphs

• A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.
Identify the Strongly Connected Components
Strongly connected components can be found in $O(n+m)$ time

- But it’s tricky!
- Simpler problem: given a vertex v, compute the vertices in v’s SCC in $O(n+m)$ time
Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks.
Find a topological order for the following graph
If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles
Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

• Proof:
 – Pick a vertex v_1, if it has in-degree 0 then done
 – If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 – If not, let (v_3, v_2) be an edge . . .
 – If this process continues for more than n steps, we have a repeated vertex, so we have a cycle
Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all outgoing edges
Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0
• Each vertex keeps track of its in-degree
• Update in-degrees and list when edges are removed
• m edge removals at O(1) cost each