CSE 421
Algorithms and Complexity

Graphs and Graph Algorithms
Autumn 2020
Lecture 6

Announcements

 Reading
— Chapter 3
— Start on Chapter 4

Graph Theory

G=(V, E)

— V: vertices, |V]|=n

— E: edges, |E| =m

Undirected graphs

— Edges sets of two vertices
{u, v}

Directed graphs

— Edges ordered pairs (u, v)

Many other flavors

— Edge / vertices weights

— Parallel edges

— Self loops

Path: v,, v,, ..., v, with
(v, vi,1)in :

— Simple Path

— Cycle

— Simple Cycle
Neighborhood

~ N(v)

Distance

Connectivity

— Undirected

— Directed (strong connectivity)
Trees

— Rooted

— Unrooted

Graph Representation

b V={a,b,c,d}
a
E ={{a, b}, {a, c}, {a, d}, {b, d} }
d

C

- b c d 11111

—| 3 » d 1 0 1

N 1| o0 0

—»| 3 - b 1 1 0
Adjacency List Incidence Matrix

O(n + m) space O(n?) space

Graph search

* Find a pathfromstot

S = {s}
while S is not empty
u = Select(S)
visit u
foreach v in N(u)
if v is unvisited
Add(S, v)
Pred[v] = u
if (v =1t) then path found

Graph Search

N

Breadth first search

* Explore vertices in layers
—sinlayer 1
— Neighbors of s in layer 2
— Neighbors of layer 2 in layer 3. ..

Breadth First Search

* Build a BFS tree from s
Q ={s}
Level[s] = 1;
while Q is not empty
u = Q.Dequeue()
visit u
foreach v in N(u)
if v is unvisited
Q.Enqueue(v)
Pred[v] = u

Level[v] = Level[u] + 1

Key observation

* All edges go between vertices on the same
layer or adjacent layers

Bipartite Graphs

* Agraph Vis bipartite if V can be partitioned
into V,, V, such that all edges go between V,
and V,

* A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

Run BFS
Color odd layers red, even layers blue

If no edges between the same layer, the graph
is bipartite
If edge between two vertices of the same

layer, then there is an odd cycle, and the
graph is not bipartite

Theorem: A graph is bipartite if and only if
it has no odd cycles

Lemma 1

* |f a graph contains an odd cycle, it is not
bipartite

Lemma 2

* |f a BFS tree has an intra-level edge, then the
graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

* |f a graph has no odd length cycles, then it is
bipartite

Graph Search

e Data structure for next vertex to visit
determines search order

Graph search

Breadth First Search
S ={s}
while S is not empty
u = Dequeue(S)
if u is unvisited
visit u
foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}
while S is not empty
u=Pop(S)

if u is unvisited
visit u
foreach v in N(u)
Push(S, v)

Breadth First Search

* All edges go between vertices on the same
layer or adjacent layers

Depth First Search

* Each edge goes between,””

vertices on the same !
branch

* No cross edges

Connected Components

* Undirected Graphs
O O € ,

Computing Connected Components in
O(n+m) time
e Asearch algorithm from a vertex v can find all

vertices in v's component

 While there is an unvisited vertex v, search
from v to find a new component

Directed Graphs

* A Strongly Connected Component is a subset
of the vertices with paths between every pair

of vertices.

ldentify the Strongly Connected
Components

Strongly connected components can be
found in O(n+m) time

e Butit’s tricky!
* Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time

Topological Sort

* Given a set of tasks with precedence
constraints, find a linear order of the tasks

G G @D
\@§

@B, (gggy— 5D

Find a topological order for the following
graph

)
\

= LA

\ /O
?\ \@7%

If a graph has a cycle, there is no
topological sort
e Consider the first vertex

on the cycle in the @: F
topological sort

* |t must have an
incoming edge (8)

Definition: A graph is
Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a
vertex with in-degree O

* Proof:
— Pick a vertex v,, if it has in-degree O then done

— If not, let (v,, v,) be an edge, if v, has in-degree O
then done

— If not, let (v, v,) be an edge . . .

— If this process continues for more than n steps, we
nave a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v

Delete the vertex v and all out going edges

Q)
SN
N@ ®/

N

Details for O(n+m) implementation

Maintain a list of vertices of in-degree O
Each vertex keeps track of its in-degree

Update in-degrees and list when edges are
removed

m edge removals at O(1) cost each

