Worst Case Runtime Function

- Problem P: Given instance I compute a solution S
- A is an algorithm to solve P
- T(I) is the number of steps executed by A on instance I
- T(n) is the maximum of T(I) for all instances of size n

Ignore constant factors

- Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight
- Express run time as $T(n) = O(f(n))$

Formalizing growth rates

- $T(n) = O(f(n))$ \leftarrow [T : \mathbb{Z}^+ \rightarrow \mathbb{R}^+]$
 - If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
- $T(n) = O(f(n))$ will be written as: $T(n) = O(f(n))$
 - Be careful with this notation

Efficient Algorithms

- Polynomial Time (P): Class of all problems that can be solved with algorithms that have polynomial runtime functions
- Polynomial Time has been a very successful tool for theoretical computer science
- Problems in Polynomial Time often have practical solutions
Graph Theory

- \(G = (V, E) \)
 - \(V \) – vertices
 - \(E \) – edges
- Undirected graphs
 - Edges sets of two vertices \(\{u, v\} \)
- Directed graphs
 - Edges ordered pairs \((u, v) \)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

- Path: \(v_1, v_2, \ldots, v_k \) with \((v_i, v_{i+1}) \) in \(E \)
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - \(N(v) \)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph Representation

- \(V = \{a, b, c, d\} \)
- \(E = \{(a, b), (a, c), (a, d), (b, d)\} \)

<table>
<thead>
<tr>
<th>Adjacency List</th>
<th>Incidence Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Implementation Issues

- Graph with \(n \) vertices, \(m \) edges
- Operations
 - Lookup edge
 - Add edge
 - Enumeration edges
 - Initialize graph
- Space requirements

Graph search

- Find a path from \(s \) to \(t \)

```python
S = \( (s) \)
while \( S \) is not empty
  \( u = \text{Select}(S) \)
  visit \( u \)
  foreach \( v \) in \( N(u) \)
    if \( v \) is unvisited
      Add(\( S, v \))
      \( \text{Pred}[v] = u \)
    if \( (v = t) \) then path found
```

Breadth first search

- Explore vertices in layers
 - \(s \) in layer 1
 - Neighbors of \(s \) in layer 2
 - Neighbors of layer 2 in layer 3 . . .
Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2
- A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite
Lemma 2
• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3
• If a graph has no odd length cycles, then it is bipartite

Graph Search
• Data structure for next vertex to visit determines search order

Graph search

Breadth First Search

\[
S = \{s\}
\]
while S is not empty
 \[
 u = \text{Dequeue}(S)
 \]
 if u is unvisited
 visit u
 foreach v in N(u)
 Enqueue(S, v)

Depth First Search

\[
S = \{s\}
\]
while S is not empty
 \[
 u = \text{Pop}(S)
 \]
 if u is unvisited
 visit u
 foreach v in N(u)
 Push(S, v)

Breadth First Search
• All edges go between vertices on the same layer or adjacent layers

Depth First Search
• Each edge goes between vertices on the same branch
• No cross edges