Announcements
Worst Case Runtime Function

• Problem P: Given instance I compute a solution S
• A is an algorithm to solve P
• $T(I)$ is the number of steps executed by A on instance I
• $T(n)$ is the maximum of $T(I)$ for all instances of size n
Ignore constant factors

• Constant factors are arbitrary
 – Depend on the implementation
 – Depend on the details of the model

• Determining the constant factors is tedious and provides little insight

• Express run time as $T(n) = O(f(n))$
Formalizing growth rates

- $T(n)$ is $O(f(n))$ \[T : Z^+ \rightarrow R^+]$
 - If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 - Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$

- $T(n)$ is $O(f(n))$ will be written as:
 $T(n) = O(f(n))$
 - Be careful with this notation
Efficient Algorithms

• Polynomial Time (P): Class of all problems that can be solved with algorithms that have polynomial runtime functions
• Polynomial Time has been a very successful tool for theoretical computer science
• Problems in Polynomial Time often have practical solutions
Graph Theory

- $G = (V, E)$
 - V – vertices
 - E – edges
- Undirected graphs
 - Edges sets of two vertices $\{u, v\}$
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops
Definitions

- **Path**: \(v_1, v_2, \ldots, v_k \), with \((v_i, v_{i+1})\) in \(E\)
 - Simple Path
 - Cycle
 - Simple Cycle

- **Neighborhood**
 - \(N(v) \)

- **Distance**

- **Connectivity**
 - Undirected
 - Directed (strong connectivity)

- **Trees**
 - Rooted
 - Unrooted
Graph Representation

V = \{ a, b, c, d \}

E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}

Adjacency List

Incidence Matrix

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{array}
\]
Implementation Issues

• Graph with n vertices, m edges
• Operations
 – Lookup edge
 – Add edge
 – Enumeration edges
 – Initialize graph
• Space requirements
Graph search

• Find a path from s to t

\[S = \{s\} \]

while S is not empty

\[u = \text{Select}(S) \]

visit u

foreach v in N(u)

if v is unvisited

\[\text{Add}(S, v) \]

\[\text{Pred}[v] = u \]

if \((v = t)\) then path found
Breadth first search

- Explore vertices in layers
 - \(s \) in layer 1
 - Neighbors of \(s \) in layer 2
 - Neighbors of layer 2 in layer 3 . . .
Key observation

- All edges go between vertices on the same layer or adjacent layers.
Bipartite Graphs

• A graph \(V \) is bipartite if \(V \) can be partitioned into \(V_1, V_2 \) such that all edges go between \(V_1 \) and \(V_2 \)

• A graph is bipartite if it can be two colored
Can this graph be two colored?
Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite
Theorem: A graph is bipartite if and only if it has no odd cycles
Lemma 1

- If a graph contains an odd cycle, it is not bipartite
Lemma 2

- If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level
Lemma 3

• If a graph has no odd length cycles, then it is bipartite
Graph Search

- Data structure for next vertex to visit determines search order
Graph search

Breadth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Dequeue}(S) \]

if \(u \) is unvisited

visit \(u \)

foreach \(v \) in \(N(u) \)

\[\text{Enqueue}(S, v) \]

Depth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Pop}(S) \]

if \(u \) is unvisited

visit \(u \)

foreach \(v \) in \(N(u) \)

\[\text{Push}(S, v) \]
Breadth First Search

• All edges go between vertices on the same layer or adjacent layers
Depth First Search

• Each edge goes between vertices on the same branch
• No cross edges