Announcements

- Reading
 - Chapter 2.1, 2.2
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- Homework Guidelines
 - Submit homework with Gradescope
 - Describing an algorithm
 - Clarity is most important
 - Pseudocode generally preferable to just English
 - But sometimes both methods combined work best
 - Prove that your algorithm works
 - A proof is a “convincing argument”
 - Give the runtime for your algorithm
 - Justify that the algorithm satisfies the runtime bound
 - You may lose points for style
 - Homework assignments will (probably) be worth the same amount

Five Problems

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Facility Location

What does it mean for an algorithm to be efficient?

Definitions of efficiency

- Fast in practice
- Qualitatively better worst case performance than a brute force algorithm
Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time.
- Run time as a function of problem size:
 - Run time: count number of instructions executed on an underlying model of computation.
 - $T(n)$: maximum run time for all problems of size at most n.

Polynomial Time

- Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm).

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice.
- The class of polynomial time algorithms has many good, mathematical properties.

Polynomial vs. Exponential Complexity

- Suppose you have an algorithm which takes $n!$ steps on a problem of size n.
- If the algorithm takes one second for a problem of size 10, estimate the run time for the following problem sizes:
 12 14 16 18 20

Why ignore constant factors?

- Express run time as $O(f(n))$.
- Emphasize algorithms with slower growth rates.
- Fundamental idea in the study of algorithms.
- Basis of Tarjan/Hopcroft Turing Award.

- Constant factors are arbitrary:
 - Depend on the implementation.
 - Depend on the details of the model.
- Determining the constant factors is tedious and provides little insight.
Why emphasize growth rates?
• The algorithm with the lower growth rate will be faster for all but a finite number of cases
• Performance is most important for larger problem size
• As memory prices continue to fall, bigger problem sizes become feasible
• Improving growth rate often requires new techniques

Formalizing growth rates
• $T(n)$ is $O(f(n))$ \[T : Z^+ \rightarrow R^+ \]
 – If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 – Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
• $T(n)$ is $O(f(n))$ will be written as: $T(n) = O(f(n))$
 – Be careful with this notation

Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let $c =$

Let $n_0 =$

$T(n)$ is $O(f(n))$ if there exist c, n_0, such that for $n > n_0$,
$T(n) < c f(n)$

Order the following functions in increasing order by their growth rate
a) $n \log^4 n$
b) $2n^2 + 10n$
c) $2^{n/100}$
d) $1000n + \log^8 n$
e) n^{100}
f) 3^n
g) $1000 \log^{10} n$
h) $n^{1/2}$

Lower bounds
• $T(n)$ is $\Omega(f(n))$
 – $T(n)$ is at least a constant multiple of $f(n)$
 – There exists an n_0, and $c > 0$ such that $T(n) > cf(n)$ for all $n > n_0$
• Warning: definitions of Ω vary
• $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

Useful Theorems
• If $\lim (f(n) / g(n)) = c$ for $c > 0$ then $f(n) = \Theta(g(n))$
• If $f(n)$ is $O(g(n))$ and $g(n)$ is $O(h(n))$ then $f(n)$ is $O(h(n))$
• If $f(n)$ is $O(h(n))$ and $g(n)$ is $O(h(n))$ then $f(n) + g(n)$ is $O(h(n))$
Ordering growth rates

• For $b > 1$ and $x > 0$
 – $\log^b n$ is $O(n^x)$

• For $r > 1$ and $d > 0$
 – n^d is $O(r^n)$