CSE 417 Algorithms

Richard Anderson
Autumn 2020
Lecture 4
Announcements

• Reading
 – Chapter 2.1, 2.2
 – Chapter 3 (Mostly review)
 – Start on Chapter 4

• Homework Guidelines
 – Submit homework with Gradescope
 – Describing an algorithm
 • Clarity is most important
 • Pseudocode generally preferable to just English
 – But sometimes both methods combined work best
 – Prove that your algorithm works
 • A proof is a “convincing argument”
 – Give the run time for your algorithm
 • Justify that the algorithm satisfies the runtime bound
 – You may lose points for style
 – Homework assignments will (probably) be worth the same amount
Five Problems

Scheduling
Weighted Scheduling
Bipartite Matching
Maximum Independent Set
Competitive Facility Location
Summary – Five Problems

• Scheduling
• Weighted Scheduling
• Bipartite Matching
• Maximum Independent Set
• Competitive Scheduling
What does it mean for an algorithm to be efficient?
Definitions of efficiency

- Fast in practice

- Qualitatively better worst case performance than a brute force algorithm
Polynomial time efficiency

• An algorithm is efficient if it has a polynomial run time
• Run time as a function of problem size
 – Run time: count number of instructions executed on an underlying model of computation
 – $T(n)$: maximum run time for all problems of size at most n
Polynomial Time

• Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)
Why Polynomial Time?

• Generally, polynomial time seems to capture the algorithms which are efficient in practice

• The class of polynomial time algorithms has many good, mathematical properties
Polynomial vs. Exponential Complexity

• Suppose you have an algorithm which takes $n!$ steps on a problem of size n
• If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes:

 12 14 16 18 20
Ignoring constant factors

• Express run time as $O(f(n))$
• Emphasize algorithms with slower growth rates
• Fundamental idea in the study of algorithms
• Basis of Tarjan/Hopcroft Turing Award
Why ignore constant factors?

• Constant factors are arbitrary
 – Depend on the implementation
 – Depend on the details of the model

• Determining the constant factors is tedious and provides little insight
Why emphasize growth rates?

• The algorithm with the lower growth rate will be faster for all but a finite number of cases
• Performance is most important for larger problem size
• As memory prices continue to fall, bigger problem sizes become feasible
• Improving growth rate often requires new techniques
Formalizing growth rates

• $T(n)$ is $O(f(n))$ \[T : \mathbb{Z}^+ \rightarrow \mathbb{R}^+\]
 – If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 – Exist c, n_0, such that for $n > n_0$, $T(n) < c \cdot f(n)$

• $T(n)$ is $O(f(n))$ will be written as:
 $T(n) = O(f(n))$
 – Be careful with this notation
Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let $c =$

Let $n_0 =$

$T(n)$ is $O(f(n))$ if there exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
Order the following functions in increasing order by their growth rate

a) $n \log^4 n$

b) $2n^2 + 10n$

c) $2^{n/100}$

d) $1000n + \log^8 n$

e) n^{100}

f) 3^n

f) 3^n

g) $1000 \log^{10} n$

h) $n^{1/2}$
Lower bounds

• \(T(n) \) is \(\Omega(f(n)) \)
 – \(T(n) \) is at least a constant multiple of \(f(n) \)
 – There exists an \(n_0 \), and \(\epsilon > 0 \) such that
 \(T(n) > \epsilon f(n) \) for all \(n > n_0 \)

• Warning: definitions of \(\Omega \) vary

• \(T(n) \) is \(\Theta(f(n)) \) if \(T(n) \) is \(O(f(n)) \) and
 \(T(n) \) is \(\Omega(f(n)) \)
Useful Theorems

• If \(\lim (f(n) / g(n)) = c \) for \(c > 0 \) then
 \(f(n) = \Theta(g(n)) \)

• If \(f(n) \) is \(O(g(n)) \) and \(g(n) \) is \(O(h(n)) \) then
 \(f(n) \) is \(O(h(n)) \)

• If \(f(n) \) is \(O(h(n)) \) and \(g(n) \) is \(O(h(n)) \) then
 \(f(n) + g(n) \) is \(O(h(n)) \)
Ordering growth rates

- For $b > 1$ and $x > 0$
 - $\log_b n$ is $O(n^x)$

- For $r > 1$ and $d > 0$
 - n^d is $O(r^n)$