
University of Washington October 30, 2020
Department of Computer Science and Engineering
CSE 417, Autumn 2020

Homework 5, Due Friday, November 6, 1:30 pm, 2020

Turn in instructions: Electronic submission on GradeScope. Submit as a PDF, with each problem
on a separate page. While we have encouraged typeset solutions (e.g., Word or LaTex) in the
homework, it is probably easiest to hand write solutions for the practice midterm exam (as the
midterm was designed for pen and paper).

This homework assignment has two parts - a programming component (Dijkstra!) and a sample
midterm. For the sample midterm, you are strongly encouraged to take the midterm under exam
conditions - closed book, 50 minutes, to see how you perform on the questions as an assessment.
After you have completed the practice midterm, you may take a second pass over the exam with
additional time and resources to write up solutions to turn in.

The midterm questions are questions 1-7, and programming questions are 8-10. A separate copy
of the midterm is also available for download to use in a sample exam setting. Problem number 6
requires material from Friday’s lecture. (The schedule slipped by a lecture.)

Problem 1 Graph Theory (5 points):

a) True or false: Let G = (V,E) be an undirected graph. If G is a tree, then G is bipartite.
Justify your answer1.

b) True or false: Let G = (V,E) be a directed graph with n vertices and m edges. It is possible
to determine if G has a cycle in O(n + m) time. Justify your answer.

Problem 2 Stable Matching (5 points):

Step through the Gale-Shapely stable matching algorithm on the instance below. (You may choose
the proposals in any order.) The preference lists are:

M =

m1 : w1 w2 w3 w4

m2 : w1 w3 w4 w2

m3 : w2 w1 w3 w4

m4 : w2 w1 w3 w4

W =

w1 : m3 m4 m1 m2

w2 : m1 m2 m4 m3

w3 : m3 m4 m1 m2

w4 : m1 m2 m3 m4

1“Justify” means give a short and convincing explanation. Depending on the situation, justifications can involve

counter examples, or cite results established in the text or in lecture.

Fill in the following table to trace the algorithm. The first two rows are given.

Round Proposal Result Current Matching

0 (m1, ∗), (m2, ∗), (m3, ∗), (m4, ∗)

1 m1 proposes to w1 w1 accepts m1 (m1, w1), (m2, ∗), (m3, ∗), (m4, ∗)

2 m2 proposes to w1 w1 rejects m2 (m1, w1), (m2, ∗), (m3, ∗), (m4, ∗)

3

4

5

6

7

8

9

10

11

12

Problem 3 Shortest Cycle (5 points):

Let G = (V,E) be an undirected graph. Let e = {u, v} be an edge in G. Give an O(n + m) time
algorithm that finds the shortest cycle in G which contains the edge e. Explain why your algorithm
is correct.

Problem 4 Connected Components (5 points):

Suppose G = (V,E) is an undirected graph with n vertices and n edges. (Note: G is not allowed
to have self loops or parallel edges.)

a) What is the minimum number of connected components that G can have? Justify your
answer.

b) What is the maximum number of connected components that G can have? Justify your
answer.

Problem 5 Interval Scheduling (5 points):

The input for an interval scheduling problem is a set of intervals I = {i1, . . . , in} where ik has start
time sk, and finish time fk. The problem is to find a set of non-overlapping intervals that satisfies
a given criteria.

a) Suppose that you want to maximize the total length of the selected intervals. True or false:
The greedy algorithm based on selecting intervals in order of decreasing length finds an
optimal solution. Justify your answer.

b) Suppose that all intervals have the same length, and you want to maximize the total length
of the selected intervals. True or false: The greedy algorithm based on selecting intervals in
order of increasing start time finds an optimal solution. Justify your answer.

Problem 6 Recurrences (5 points):

Solve the following recurrences by unrolling the recursion tree. Express your answers as O(f(n)).

a)

T (n) =

{
5T (n3) + n if n > 1
1 if n ≤ 1

b)

T (n) =

{
T (4n5) + n if n > 1
1 if n ≤ 1

c)

T (n) =

{
16T (n4) + n2 if n > 1
1 if n ≤ 1

Problem 7 Dijkstra’s Algorithm (5 points):

Use the following graph to simulate versions of Dijkstra’s algorithm in parts a) and c) starting from
the vertex s.

•

•

•

•

•

•�
�
�
�
�
�
���

@
@
@
@
@
@
@@R

PPPPPPPPPPPPPPPPPPPPPPq-?

-PPPPPPPPPPPPPPPPPPPPPPq

6@
@
@
@
@
@
@@R

�
�
�
�
�
�
���

s

a c

e

b d

4

2

1

7

6

9 5

3

4

3

a) Simulate Dijkstra’s shortest path algorithm on the graph above by filling in the table. The
entries should contain the preliminary distance values.

Round Vertex s a b c d e

1

2

3

4

5

6

b) Draw the back edges found by your simulation of Dijkstra’s algorithm.

•

•

•

•

•

•�
�
�
�
�
�
���

@
@
@
@
@
@
@@R

PPPPPPPPPPPPPPPPPPPPPPq-?

-PPPPPPPPPPPPPPPPPPPPPPq

6@
@
@
@
@
@
@@R

�
�
�
�
�
�
���

s

a c

e

b d

Problem 8 Grid graph generator (5 points):

The purpose of this problem is to construct a random graph generator that should be interesting
for shortest path’s algorithms. An n× n directed grid graph has the vertex set

V = {〈i, j〉 | 1 ≤ i ≤ n and 1 ≤ j ≤ n}

and edge set

E = {(〈i, j〉, 〈i+1, j〉) | 1 ≤ i ≤ n−1 and 1 ≤ j ≤ n}∪{(〈i, j〉, 〈i, j+1〉) | 1 ≤ i ≤ n and 1 ≤ j ≤ n−1}.

The base graph, for a given n is an n× n grid graphs. The edge costs are random real (or floating
point) numbers x chosen uniformly in the range 0 ≤ x < 1.
For this problem, create the generator, and print an example random grid graph for n = 4. It is
sufficient to print out a list of edges (and costs) that the graph has.

Problem 9 Dijkstra’s Shortest Path Algorithm Implementation (10 points):

Implement Dijkstra’s Shortest Path algorithm and run the algorithm on the grid graph from prob-
lem 8. The starting vertex is s = 〈1, 1〉 and you are interested in finding the distance to t = 〈n, n〉.
For running your algorithm, you may use n = 100 (although you could probably use a much larger
value of n, maybe as large as n = 10, 000). Run your algorithm for a number of runs (say 10) to
compute the average distance between s and t. Before you run your algorithm, you may want to
estimate what the distance should be.

Problem 10 Dijkstra’s Bottleneck Path Algorithm (10 points):

Same as problem 9, but implement the algorithm to compute the bottleneck path distance.

