Dynamic Programming:
Interval Scheduling and Knapsack
6.1 Weighted Interval Scheduling
Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

How?
- Divide & Conquer?
- Greedy?
Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Keep job if compatible with previously chosen jobs.

Observation. Greedy fails spectacularly with arbitrary weights.

Exercises: by “density” = weight per unit time? Other ideas?
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \) largest \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0. \)
Dynamic Programming: Binary Choice

Notation. \(\text{OPT}(j) = \text{value of optimal solution to the problem consisting of job requests 1, 2, ..., j.} \)

- **Case 1:** Optimum selects job \(j \).
 - can't use incompatible jobs \{ \(p(j) + 1, p(j) + 2, ..., j - 1 \) \}
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(p(j) \)

- **Case 2:** Optimum does not select job \(j \).
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(j-1 \)

key idea: binary choice

\[
\text{OPT}(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \{ v_j + \text{OPT}(p(j)), \text{OPT}(j-1) \} & \text{otherwise}
\end{cases}
\]
Weighted Interval Scheduling: Brute Force Recursion

Brute force recursive algorithm.

Input: $n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n$

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

Compute $p(1), p(2), \ldots, p(n)$

Compute-$Opt(j)$ {

 if $(j = 0)$

 return 0

 else

 return $\max(v_j + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1))$

}
Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm is correct, but spectacularly slow because of redundant sub-problems \(\Rightarrow\) exponential time.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[
p(1) = p(2) = 0; p(j) = j-2, j \geq 3
\]
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

Iterative-Compute-Opt {
\begin{align*}
 \text{OPT[0]} & = 0 \\
 \text{for } j & = 1 \text{ to } n \\
 \text{OPT}[j] & = \max(v_j + \text{OPT}[p(j)], \text{OPT}[j-1])
\end{align*}
}

Output \(\text{OPT}[n] \)

Claim: \(\text{OPT}[j] \) is value of optimal solution for jobs \(1..j \)

Timing: Loop is \(O(n) \); sort is \(O(n \log n) \); what about \(p(j) \)?
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \text{largest } i < j \text{ such that job } i \text{ is compatible with } j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0 \).

<table>
<thead>
<tr>
<th>j</th>
<th>(v_j)</th>
<th>(p_j)</th>
<th>(\text{opt}_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weighted Interval Scheduling Example

Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).
\(p(j) = \) largest \(i < j \) s.t. job \(i \) is compatible with \(j \).

Exercise: try other concrete examples:
If all \(v_j = 1 \): greedy by finish time \(\rightarrow 1, 4, 8 \)
what if \(v_2 > v_1 \), but \(< v_1 + v_4 \)?
\(v_2 > v_1 + v_4 \), but \(v_2 + v_6 < v_1 + v_7 \), say? etc.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(\max(v_j + \text{opt}[p(j)], \text{opt}[j-1]) = \text{opt}[j])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>(\max(2+0, 0) = 2)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>(\max(3+0, 2) = 3)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>(\max(1+0, 3) = 3)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>(\max(6+2, 3) = 8)</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>9</td>
<td>(\max(9+0, 8) = 9)</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>(\max(7+3, 9) = 10)</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>(\max(2+3, 10) = 10)</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>?</td>
<td>(\max(\text{?}+9, 10) =) ?</td>
</tr>
</tbody>
</table>

Exercise: What values of \(v_8 \) cause it to be in/excluded from \(\text{opt} \)?
Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing – “traceback”

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
    if (j = 0)
        output nothing
    else if (v_j + OPT[p(j)] > OPT[j-1])
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```

- # of recursive calls ≤ n ⇒ O(n).

- the condition determining the max when computing OPT[]
- the relevant sub-problem
Sidebar: why does job ordering matter?

It’s *Not* for the same reason as in the greedy algorithm for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small number of subproblems \(O(n)\), vs the exponential number that seem to be needed if the jobs aren’t ordered (seemingly, *any* of the \(2^n\) possible subsets might be relevant).

Don’t believe me? Think about the analogous problem for weighted *rectangles* instead of intervals… (I.e., pick max weight non-overlapping subset of a set of axis-parallel rectangles.) Same problem for squares or circles also appears difficult.
6.4 Knapsack Problem
Knapsack Problem

Knapsack problem.
- Given n objects and a “knapsack.”
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: maximize total value without overfilling knapsack

Ex: { 3, 4 } has value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
<th>V/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
<td>3.60</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
<td>3.66</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Greedy: repeatedly add item with maximum ratio v_i / w_i.
Ex: { 5, 2, 1 } achieves only value = 35 \Rightarrow greedy not optimal.

[NB greedy is optimal for “fractional knapsack”: take #5 + 4/6 of #4]
Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

- **Case 1:** OPT does not select item i.
 - OPT selects best of \{ 1, 2, ..., i-1 \}

- **Case 2:** OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!
Dynamic Programming: Adding a New Variable

Def. \(\text{OPT}(i, w) = \text{max profit subset of items } 1, \ldots, i \text{ with weight limit } w. \)

- **Case 1:** \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(\{1, 2, \ldots, i-1\} \) using weight limit \(w \)

- **Case 2:** \(\text{OPT} \) selects item \(i \).
 - new weight limit = \(w - w_i \)
 - \(\text{OPT} \) selects best of \(\{1, 2, \ldots, i-1\} \) using new weight limit

\[
\text{OPT}(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
\text{OPT}(i-1, w) & \text{if } w_i > w \\
\max\{\text{OPT}(i-1, w), v_i + \text{OPT}(i-1, w-w_i)\} & \text{otherwise}
\end{cases}
\]
Knapsack Problem: Bottom-Up

OPT(i, w) = max profit from subset of items 1, ..., i with weight limit w.

Input: n, w₁,...,wₙ, v₁,...,vₙ

for w = 0 to W
 OPT[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (wᵢ > w)
 OPT[i, w] = OPT[i-1, w]
 else
 OPT[i, w] = max {OPT[i-1, w], vᵢ + OPT[i-1, w-wᵢ]}

return OPT[n, W]

(Correctness: prove it by induction on i & w.)
Knapsack Algorithm

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>0</td>
</tr>
<tr>
<td>${1}$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>${1, 2}$</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>${1, 2, 3}$</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>${1, 2, 3, 4}$</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>${1, 2, 3, 4, 5}$</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>35</td>
<td>40</td>
</tr>
</tbody>
</table>

OPT: $\{4, 3\}$
value = 22 + 18 = 40

if ($w_i > w$)

OPT[i, w] = OPT[$i-1, w$]
else

OPT[i, w] = max{OPT[$i-1, w$], v_i+OPT[$i-1, w-w_i$]}
Knapsack Problem: Running Time

Running time. $\Theta(n W)$.
- Not polynomial in input size!
- "Pseudo-polynomial."
- Knapsack is NP-hard. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial time algorithm that produces a feasible solution (i.e., satisfies weight-limit constraint) that has value within 0.01% (or any other desired factor) of optimum. [Section 11.8]