CSE 417: Algorithms and Computational Complexity

W. L. Ruzzo

Dynamic Programming, I: Fibonacci & Stamps
Dynamic Programming

Outline:

General Principles
Easy Examples – Fibonacci, Licking Stamps
Meatier examples
 Weighted interval scheduling
 String Alignment
 RNA Structure prediction
 Maybe others
Some Algorithm Design Techniques, I: Greedy

Greedy algorithms

Usually builds something a piece at a time

Repeatedly make the greedy choice - the one that looks the best right away

 e.g. closest pair in TSP search

Usually simple, fast if they work (but often don’t)
Some Algorithm Design Techniques, II: D & C

Divide & Conquer

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution.

Typically, sub-problems are disjoint, and at most a constant fraction of the size of the original.

E.g., Mergesort, Quicksort, Binary Search, Karatsuba.

Typically, speeds up a polynomial time algorithm.
Dynamic Programming

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Useful when the same sub-problems show up repeatedly in the solution

Often very robust to problem re-definition

Sometimes gives exponential speedups
“Dynamic Programming”

Program – A plan or procedure for dealing with some matter

– Webster’s New World Dictionary
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.
 “it’s impossible to use dynamic in a pejorative sense”
 “something not even a Congressman could object to”

A very simple case:
Computing Fibonacci Numbers

Recall \(F_n = F_{n-1} + F_{n-2} \) and \(F_0 = 0, F_1 = 1 \)

\[
\begin{align*}
0 & \quad 1 & \quad 1 & \quad 2 & \quad 3 & \quad 5 & \quad 8 & \quad 13 & \quad 21 & \quad 34 & \quad 55 & \quad 89 & \quad 144 & \quad 233 & \quad \ldots
\end{align*}
\]

Recursive algorithm:

\[
\text{FiboR}(n) \quad \begin{cases}
\text{if } n = 0 \text{ then return}(0) \\
\text{else if } n = 1 \text{ then return}(1) \\
\text{else return}(\text{FiboR}(n-1)+\text{FiboR}(n-2))
\end{cases}
\]

Note:

Exponential \(\uparrow \): \(F(n) \approx \Phi^n/\sqrt{5} \), \(\Phi = (1+\sqrt{5})/2 \approx 1.618\ldots \)
Call tree - start
Full call tree

many duplicates ⇒ exponential time!

F(n) ≈ Φ^n/√5
Two Alternative Fixes

Memoization ("Caching")

Compute on demand, but don’t re-compute:
Save answers from all recursive calls
Before a call, test whether answer saved

Dynamic Programming (not memoized)

Pre-compute, don’t re-compute:
Recursion becomes iteration (top-down → bottom-up)
Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structures
Fibonacci - Dynamic Programming Version

FiboDP(n):
F[0] ← 0
F[1] ← 1
for i = 2 to n do
 F[i] ← F[i-1] + F[i-2]
end
return(F[n])

For this problem, suffices to keep only last 2 entries instead of full array, but about the same speed.
Dynamic Programming

Useful when

Same recursive sub-problems occur *repeatedly*
Parameters of these recursive calls *anticipated*
The solution to whole problem can be solved without knowing the *internal* details of how the sub-problems are solved

“principle of optimality” – more below, e.g. slide 19
Example: Making change

Given:
- Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
- An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
- Give as many as possible of the next biggest denomination
Licking Stamps

Given:

Large supply of 5¢, 4¢, and 1¢ stamps
An amount N

Problem: choose fewest stamps totaling N
A Few Ways To Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations.
A Simple Algorithm

At most N stamps needed, etc.

for $a = 0, \ldots, N$ {
 for $b = 0, \ldots, N$ {
 for $c = 0, \ldots, N$ {
 if $(5a+4b+c == N \&\& a+b+c$ is new min) {
 (a,b,c);}}}
 output retained triple;
}

Time: $O(N^3)$
(Not too hard to see some optimizations, but we’re after bigger fish…)
Theorem: If last stamp in an opt sol has value v, then previous stamps are *opt sol for* $N-v$.

Proof: if not, we could improve the solution for N by using opt for $N-v$.

Alg: for $i = 1$ to n:

\[
OPT(i) = \min \begin{cases}
0 & i=0 \\
1+OPT(i-1) & i\geq1 \\
1+OPT(i-4) & i\geq4 \\
1+OPT(i-5) & i\geq5
\end{cases}
\]

Claim: $OPT(i) =$ min number of stamps totaling i.

Pf: induction on i.

Optimality Principle
New Idea: Recursion

\[\text{OPT}(i) = \min \left\{ \begin{array}{ll}
0 & i = 0 \\
1 + \text{OPT}(i-1) & i \geq 1 \\
1 + \text{OPT}(i-4) & i \geq 4 \\
1 + \text{OPT}(i-5) & i \geq 5 \\
\end{array} \right\} \]

Time: \(> 3^{N/5} \)
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

for \(i = 0, \ldots, N \) do

\[
\text{OPT}(i) = \min \begin{cases}
0 & i = 0 \\
1 + \text{OPT}(i - 1) & i \geq 1 \\
1 + \text{OPT}(i - 4) & i \geq 4 \\
1 + \text{OPT}(i - 5) & i \geq 5
\end{cases}
\]

Time: \(O(N) \)
Finding *How Many* Stamps

\[
1 + \min(3, 1, 3) = 2
\]

Goal
Finding Which Stamps: Trace-Back

\[
\begin{array}{cccccccccccc}
 \text{i} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
 \text{OPT}[i] & 0 & 1 & 2 & 3 & 1 & 1 & 2 & 3 & 2 & & & \\
\end{array}
\]

\[1 + \min(3, 1, 3) = 2\]

\[
\text{OPT}(i) = \min \begin{cases}
0 & i=0 \\
1 + \text{OPT}(i-1) & i \geq 1 \\
1 + \text{OPT}(i-4) & i \geq 4 \\
1 + \text{OPT}(i-5) & i \geq 5
\end{cases}
\]
Trace-Back

Way 1: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

TraceBack(i):
 if i == 0 then return;
 for d in {1, 4, 5} do
 if OPT[i] == 1 + OPT[i - d]
 then break;
 print d;
 TraceBack(i - d);

\[
OPT(i) = \min \begin{cases}
0 & i=0 \\
1+OPT(i-1) & i\geq1 \\
1+OPT(i-4) & i\geq4 \\
1+OPT(i-5) & i\geq5
\end{cases}
\]
Complexity Note

O(N) is better than O(N³) or O(3^{N/5})

But still exponential in input size (log N bits)

(E.g., miserable if N is 64 bits – c\cdot2^{64} steps & 2^{64} memory.)

Note: can do in O(1) for fixed denominations, e.g., 5¢, 4¢, and 1¢ (how?) but not in general (i.e., when denominations and total are both part of the input). See “NP-Completeness” later.
Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways