CSE 417: Algorithms and
Computational Complexity

Lecture |: Overview

Winter 2019

Larry Ruzzo

—

,q,,‘ . Computer Science & Engineering

o

-

CSE 417, Wi '19: Algorithms & Computational Complexity

[» CSE Home > About Us |> Search > Contact Info
Ag:gnistrative Lecture: JHN 102 (woom info) MWF 1:30-2:20
Schedule & Reading office H Locati Ph
Course Email/BBoard ice Hours ocation one
Subscription Options Instructor: Larry Ruzzo, ruzzolcs F 2:30-3:30 CSE 554 (206) 543-6298 <--1/11 excepted
Class List Archive TAs: Yuqing Ai, yugingai€cs Tu 1:00-2:00 4th floor breakout
E-mail Course Staff Daniel J ded e TBA
Google Groups BBoard aniel Jones, dejonestes
Lecture Notes Saidutt Nimmagadda, nimmas@cs TBA
1: Overview & Example Alex Okeson, amokeson€@cs Tu 2:30-3:30 CSE 021
Lecture Recordings
Course Email: cse417a_wil9@uw.edu. Staff announcements and o=~ A \ 't homework,
should change their

default subscription options. Messages are -

Discussion Board: Also -~ S\.\.\“%to _..work, etc.

Catalog Do~~~ c S W a _-o. Efficient algorithms for manipulating graphs and
s .
[]

g Turing machines. Time and space complexity. NP-
course

lectures, etc. The instructor and TAs are subscribed to #- e du
n.

‘(\’CCP . |

~wn@: Homework, Midterm, Final. Homework will be a mix of paper & pencil exercises and programing. Overall weights
55%,15%, 30%, roughly.

Late Policy: Papers and/or electronic turnins are due at the start of class on the due date. 10% off for up to one day late;
additional 15% per day thereafter. (Day = calendar day, i.e., Sunday is later than Saturday.)
Textbooks: Algorithm Design by Jon Kleinberg and Eva Tardos. Addison Wesley, 2006. (Available from U Book Store,

Asvarman Ata)

Open "mailman.u.washington.edu/mailman/private/cse417a_wi19" in a new tab

2

What you’ll have to do

Homework (~55% of grade)
Programming
Several small projects

Written homework assignments

English exposition and pseudo-code
Analysis and argument as well as design

Midterm / Final Exam (~15% / 30%)

Late Policy:

Papers and/or electronic turnins are due at the start of
class on the due date. 10% off for one day late; 15% per
day thereafter.

Textbook

Algorithm Design by Jon
Kleinberg and Eva
Tardos. Addison
Wesley, 2006.

- EVA TARDOS

\
|

http://www.aw-bc.com/info/kleinberg/
http://www.cs.cornell.edu/home/kleinber/
http://www.cs.cornell.edu/People/eva/eva.html

What the course is about

Design of Algorithms
design methods
common or important types of problems
analysis of algorithms - efficiency

correctness PI"OOfS

What the course is about

Complexity, NP-completeness and intractability

solving problems in principle is not enough

algorithms must be efficient
some problems have no efficient solution

NP-complete problems

important & useful class of problems whose solutions
(seemingly) cannot be found efficiently, but can be
checked easily

Very Rough Division of Time

Algorithms (7 weeks)
Analysis of Algorithms

Basic Algorithmic Design Techniques
Applications

Complexity & NP-completeness (3 weeks)

. . .
‘“‘Qﬁ?n:* Nl Computer Science & Engineering

Check online

| T 0‘“ CSE 417, Wi '06: Approximate Schedule

SChedu Ie Page for CSE Home AboutUs ~ €
. . Due Lecture Topic Reading
(eVOIV| ng) details Week1 |M Holiday
vER Intro, Examples & Complexity ~ |Ch. 1; Ch. 2
F Intro, Examples & Complexity
Week2 |M Intro, Examples & Complexity 7
LA [Graph Algorithms ch3
F Graph Algorithms

Complexity Example

Cryptography (e.g., RSA, SSL in browsers)
Secret: p,q prime, say 512 bits each
Public: n which equals p x g, 1024 bits
In principle
there is an algorithm that given n will find p and q:
try all 2°'2 > 1.3x10'>* possible p’s: kinda slow...
In practice
no fast algorithm known for this problem (on non-quantum computers)

security of RSA depends on this fact
(“quantum computing”: strongly driven by possibility of changing this)
8

Algorithms versus Machines

We all know about Moore’s Law and the
exponential improvements in hardware...

Ex: sparse linear equations over 25 years

|0 orders of magnitude improvement!

Algorithms or Hardware!

25 years
progress
solving sparse
linear

systems

hardware: ©
4 orders of ¢
magnitude

IO7E
IO6—;
IO5-;
I04—;
IO3—;
IOZ_;

10'-

G.E./ CDC 3600

CDC 6600

CDC 7600

Source: Sandia, via M. Schuliz

Cray 3 (Est.)

100
1960

1
1970

1
1980

1
1990

2000

Algorithms or Hardware!

25 years
progress

solving sparse

linear
systems

hardware: 4
orders of
magnitude

software: 6
orders of
magnitude

Seconds

IO7E
IO6—;
IO5-;
IO4—;
IO3—;
IOZ_;

10'-

G.E./ CDC 3600

CDC 7600

Sparse G.E.

Gauss-Seidel

Source: Sandia, via M. Schuliz

G.E. = Gaussian Elimination
CDC 6600 SOR = SucFessive ngrReIaxation
CG = Conjugate Gradient

Cray 3 (Est.)

CG

100
1960

1 v 1
1970 1980

1
1990

2000

Algorithms or Hardware!

The
N-Body
Problem:

in 30 years
107 hardware
1010 software

Log(Floats/[dynamical time] for 10 Million Particles)

20

15

10

-direct sum

-neighborhoods

treecode on cosmology problems-

tree tuned for planetesimals--

tree with planetesimal adaptive integrator-

Source: T.Quinn

| | |

tree with MVS, perturbative forces--

1970

Year

15

—y
(@

Log(Flops)

Algorithms or Hardware!

SAT/SMT Solvers: 1000x improvement in a dozen years

® Solver-based programming languages
* Compiler optimizations using solvers
® Solver-based debuggers

® Solver-based type systems

® Solver-based concurrency bugfinding

| ’000,000 Constraints ® Solver-based synthesis

® Bio & Optimization

® Concolic Testing
® Program Analysis
*® Equivalence Checking

. * Auto Configuration
100,000 Constraints B

¢ Bounded MC
® Program Analysis
* Al

10,000 Constraints

1,000 Constraints €
1998 2000 2004 2007 2010

Data courtesy of Dr.Vijay Ganesh, U.Waterloo

Algorithm: definition

Procedure to accomplish a task or solve a
well-specified problem

Well-specified: know what all possible inputs
look like and what output looks like given them

“accomplish” via simple, well-defined steps
Ex: sorting names (via comparison)

Ex: checking for primality (via +, -, *, /, <)

Goals

Correctness
often subtle
Analysis
often subtle
Generality, Simplicity, ‘Elegance’
Efficiency

time, memory, network bandwidth, ...

Algorithms: a sample problem

Printed circuit-board company has a robot
arm that solders components to the board

Time: proportional to total distance the arm
must move from initial rest position around

the boarc

and

vack to the initial position

For each

DOarc

the soldering

design, find best order to do

Printed Circuit Board

N\

Printed Circuit Board

A Well-defined Problem

Input: Given a set S of n points in the plane

Output: The shortest cycle tour that visits
each point in the set S once.

Better known as “TSP”

How might you solve it?

Nearest
Neighbor
Heuristic

Start at some point p,

Walk first to its
nearest neighbor p,

heuristic: A rule of thumb,
simplification, or educated
guess that reduces or limits
the search for solutions in
domains that are difficult and
poorly understood. May be
good, but usually not

guaranteed to give the best or

fastest solution.

Repeatedly walk to the nearest unvisited neighbor
P,, then ps;,... until all points have been visited

Then walk back to pg

Nearest Neighbor Heuristic

oF
Po _.-®&---- e
- ~
.F .\‘
d ®
) /
| K
Ps® R4
.\ “
~ .7

20

An input where NN works badly

An input where NN works badly

optimal soln for this example
length = 63.8 (vs ~84 above)

Pr————————————— . @) i e—ly
16 4 1.9 2 8

22
Po

Revised idea - Closest pairs first

Repeatedly join the closest pair of points 7

(s.t. result can still be part of a

single loop in the end. l.e,, join ? <
endpoints, but not points in middle, Y
of path segments already created.) l

How does this work on our bad example?

16 4 1.9 2 8

23
Po

Another bad example

24

Another bad example

I\I\[1 6+V10 =9.16

1.5 1.5

VS

25

Something that works

“Brute Force Search”:

For each of the n! = n(n-1)(n-2)...1 orderings of the
points, check the length of the cycle you get

Keep the best one

26

Two Notes

The two incorrect algorithms were “greedy”
Often very natural & tempting ideas

They make choices that look great “locally” (and never
reconsider them)

When greed works, the algorithms are typically efficient

BUT: often does not work - you get boxed in

Our correct alg avoids this, but is incredibly slow

20! is so large that checking one billion orderings per
second would take 2.4 billion seconds (around 70 years!)

And growing: n! ~ Y21 n . (nfe)" ~ 20(nlogn)

27

The Morals of the Story

Algorithms are important

Many performance gains outstrip Moore’s law

Simple problems can be hard
Factoring, TSP

Simple ideas don’t always work
Nearest neighbor, closest pair heuristics
Simple algorithms can be very slow
Brute-force factoring, TSP
For some problems, even the best algorithms are slow

Course Goals:

formalize these ideas, and
develop more sophisticated approaches

28

OUR FIELD HAS BEEN
STRUGGLING WITH THIS
PROBLEM FOR YEARS.

(71

STRUGGLE NO MORE!
I'™M HERE TO SOLVE
IT JITH ALGORITHITS!

SIX MONTHS LATER:

WOL, THIS PROBLEM
15 REALLY HARD.

(YOU DON7T SAY

\
i

https://xkcd.com/

https://xkcd.com/

