
CSE 417
Course Review



> HW9 due today

> Please fill out course evaluations

> Final on Monday, 2:30–4:20pm
– will assume familiarity with HW assignments

> (otherwise, no memorization... I’ll remind if necessary)
– be prepared to apply all techniques to new problems

Reminders



> Teach you techniques that you can use to create new 
algorithms in practice when the opportunity arises
– (or in coding interviews)
– they will also help you understand existing algorithms

Course Goal



Design Techniques
1. Divide & Conquer
2. Dynamic Programming
3. Branch & Bound

Course Topics

Modeling Techniques
1. Shortest Paths
2. Binary Search
3. Network Flows



Design Techniques
1. Divide & Conquer
2. Dynamic Programming
3. Branch & Bound

Techniques that you can apply to design new algorithms
– each of these has a good chance of being useful in practice

Course Topics



Solve new problems by transforming them into familiar ones
– these three are the most likely to show up in practice
– learning to recognize them is a useful skill

Course Topics

Modeling Techniques
1. Shortest Paths
2. Binary Search
3. Network Flows



Design Techniques
1. Divide & Conquer
2. Dynamic Programming
3. Branch & Bound

Course Topics

Modeling Techniques
1. Shortest Paths
2. Binary Search
3. Network Flows

Q: How do I know which technique to use?
A: You don’t need to. Just try them all

– in practice, you have plenty of time to do this
– (interviews & tests have artificially restricted time)



> Binary Search
> Divide & Conquer
> Dynamic Programming
> Network Flows
> Branch & Bound

Outline



> Search a space of size U in O(log U) time by repeatedly removing 
a constant fraction of the space

> If U is polynomial (e.g., n5), then search is inconsequential
> If U is exponential (e.g., 2n), then search is polynomial time

> Applications:
– find element in a sorted list

> more generally, invert a monotonic function
– find the min / max of a unimodal function

Binary Search



> Problem: given inputs (input1, ..., inputk), compute some output
– i.e., compute a function (input1, ..., inputk) ➝ output

> Ask: would it be easier to compute (input1, ..., output) ➝ inputk?
> Ask: is that function monotonic?

> If so, then we can solve problem with binary search
– define f : (input1, ..., inputk-1, output) ➝ inputk

– binary search over output parameter to find where f equals inputk

Tool #1: Binary Search



> Example: given costs A, BS, sizes MS, H, and revenue, compute the 
hemming cost H such that min manufacturing cost = revenue

> Q: Would it be easier to compute (A, BS, MS, H) ➝min cost?
> Q: Is this function monotonic in H?

> Yes (both). So use binary search

Binary Search



> Binary Search
> Divide & Conquer
> Dynamic Programming
> Network Flows
> Branch & Bound

Outline



Algorithmic approach:

1. Divide the input data into 2+ parts

2. Recursively solve the problem on each part
– i.e., solve the same problem on each part

3. Combine those solutions to solve the original problem

Divide & Conquer



> Ask: would having the solutions to sub-problems on two halves 
of the data allow me to solve the problem?

> When finished, consider whether divide + combine is truly an easier problem
– may now realize a faster way to solve it directly

Tool #2: Divide & Conquer



> Example: merge sort
– can easily merge in O(n) time
– whereas obvious algorithms for sorting take O(n2) time
– divide & conquer gives an O(n log n) algorithm

> Example: counting inversions (i.e., indexes i < j with A[i] > A[j])
– find inversions in A[1 .. n/2] and A[n/2+1 .. n]
– just need to find inversions with i ≤ n/2 and n/2 < j

> for each on the left, count those on the right that are smaller
> easy if you sort the right half first... can then binary search
> ... or use a two-finger algorithm (which is actually merge sort)

Divide & Conquer



> Applications:
– sorting: merge sort, quick sort (& quick select)
– multiplication: integers, matrices, FFT
– geometry: Voronoi diagrams, closest pair of points

Divide  & Conquer



> Master theorem gives the running time for almost any example
– compare number of leaves in recursion tree to time for split + combine
– if one asymptotically dominates the other, that is the running time
– otherwise, running time is that times O(log n)

Divide  & Conquer



> Binary Search
> Divide & Conquer
> Dynamic Programming
> Network Flows
> Branch & Bound

Outline



Algorithmic approach:

1. Solve problem using solutions to any sub-problems
– (generalization of Divide & Conquer)

2. Determine all sub-problems necessary to apply this recursively

3. Count the total number of such sub-problems
– needs to be polynomial

Dynamic Programming



> Ask: how could the optimal solution use the last element of input?
– for each possibility, describe the rest of the optimal solution (without the last 

input) as the optimal solution of a sub-problem
> this is the optimal sub-structure...
> the fact that the optimal overall solution is also optimal on at least one particular 

sub-problem is the reason we can find it efficiently

> A common case: solutions are subsets
– optimal subset could include the last element or not
– if not, must be optimal subset of items 1 .. n-1
– if so, must be optimal subset of items 1 ... n-1 to which

item n can be legally added

Tool #3: Dynamic Programming



> Example: Knapsack
– optimal solution either includes last item (wn, vn) or it does not
– if not, it is also optimal on (w1, v1), (wn-1, vn-1) with weight limit W
– if so, it is also optimal on (w1, v1), (wn-1, vn-1) with weight limit W – wn

> Example: Longest Common Subsequence
– optimal solution might use just an, just bm, both or neither
– if no an, rest is optimal on a1, ..., an-1 and b1, ...., bm

– if no bm, rest is optimal on a1, ..., an and b1, ...., bm-1

– if both, rest is optimal on a1, ..., an-1 and b1, ...., bm-1
> length of opt is 1 + length from sub-problem

Dynamic Programming



> Applications:
– ML: speech recognition, parsing natural language
– graphics: optimal polygon triangulation
– compilers: parsing, optimal code generation
– databases: query optimization
– networking: routing
– practical applications:

> spell checking
> file comparison
> document layout
> pattern matching

Dynamic Programming



> Extremely useful for finding optimal trees
– optimal BST
– matrix chain multiplication (secretly a parse tree)
– optimal polygon triangulation (secretly a tree with edges as leaves)
– CKY parsing

> Example of asking what the solution looks like in general rather 
than how it uses the last input

Dynamic Programming



> Finding the optimal substructure is the key

> Can implement the algorithm different ways
– bottom-up: fill in each entry of the table (in appropriate order)
– top-down: implement formula recursively, but use a hash table to make sure 

that each sub-problem is solved only once
– use whichever is easier for you

Dynamic Programming



> Can also compute actual solutions rather than just their values
> BUT that may require substantially more space

– space is often the bottleneck with these algorithms

> Alternatively, compute the solution from the optimal values

> Can often reduce space considerably
– may only need one previous row or column
– to get solution, use divide & conquer

> track the mid-point of the optimal solution along with opt value

Dynamic Programming



> Most broadly useful of these techniques
– if you’re going to be an expert in just one, choose this one

> Most likely way to show that a problem that appears impossible 
is efficiently solvable

> Shortest path algorithms are also of relevance to next topic...

Dynamic Programming



> Binary Search
> Divide & Conquer
> Dynamic Programming
> Network Flows
> Branch & Bound

Outline



> Not all problems are solved in terms of sub-problems

> Most important example of that are network flow problems...

Network Flows



> Most general network flow problem is the following...

> Problem: Given a number k, a graph G, nodes s and t, and, for 
each edge e, bounds le ≤ ue on flow and a cost ce, find the least 
cost feasible flow of value k.
– flow fe on edge e must satisfy fe ≤ ue

– incoming flow = outgoing flow at every node u ≠ s, t

Network Flows



> Problem: Given a number k, a graph G, nodes s and t, and, for 
each edge e, bounds le ≤ ue on flow and a cost ce, find the least 
cost feasible flow of value k.
– flow fe on edge e must satisfy fe ≤ ue

– incoming flow = outgoing flow at every node u ≠ s, t

> Alternative formulations
– arbitrary demands at each individual node
– capacities on nodes in addition to edges

Network Flows



> Ask: is there a way to model the problem with bipartite matchings, 
disjoint paths, or cuts?
– can allow multiple matchings or group restrictions
– can support node- or edge-disjoint paths
– can force particular edges to be used via lower bounds
– can restrict the set of allowed subsets with infinite capacity edges

Tool #4: Network Flows



> Applications:
– matching

> covering with dominos
> token placing
> processor scheduling

– disjoint paths
> escape problem
> airline scheduling
> network connectivity

– cuts
> project selection
> image segmentation

Network Flows



> Min-cost feasible flow generalizes two distinct problems
– shortest path (no capacities)
– maximum flow (no costs)

> (Overlaps with dynamic programming on shortest paths
– problems that lie within both spheres are often shortest path problems)

> (Overlaps with matching theory for bipartite matchings
– finding matchings in general graphs is a harder problem)

Network Flows



> Important special class of linear programming (LP) problems
– latter are problems of minimizing a linear function of some variables

subject to linear equality and inequality constraints

> Theorem: if all capacities and costs are integers, then there 
exists an integral min-cost flow
– rarely easy to see when this is true for LPs

> Fractional solutions are also interesting for flows
– example: how do we know table rounding is always possible?

Network Flows



> Binary Search
> Divide & Conquer
> Dynamic Programming
> Network Flows
> Branch & Bound

Outline



> Useful on problems that cannot be solved efficiently

> Example: NP-complete problems
– hardest of all problems in NP

> When it looks impossible...
– first try dynamic programming
– then try modeling with network flows
– then try a reduction from an NP-complete problem

> shows your problem is NP-complete

Branch & Bound



> “Easiest” NP-complete problems (reduce from these):

NP-Compete Problems

Packing independent	set

Covering vertex	cover

Constraint	Satisfaction 3-SAT

Sequencing Hamiltonian cycle

Partitioning 3D	matching

Numerical partition



> Useful on problems that cannot be solved efficiently

> Example: NP-complete problems
– hardest of all problems in NP

> When it looks impossible...
– first try dynamic programming
– then try modeling with network flows
– then try a reduction from an NP-complete problem
– then try branch & bound

Branch & Bound



Algorithmic Approach

1. Find a convenient way to break up the solution space into pieces
– applied recursively, this becomes a tree
– individual solutions are the leaves of the tree

2. Find a good lower bound on value of any solution in a tree node

3. Implement a recursive search using bound to stop early
– nodes in tree above become recursive calls

Branch & Bound



> Ask: what is the smallest subset of the constraints I could remove 
to make this problem efficiently solvable?
– solving the problem with constraints removed gives a lower bound on the value 

of the true optimum solution
> (upper bound in the case of a maximization problem)
> computes the minimum of a set that includes not only all valid solutions but also 

invalid ones

Tool #5: Branch & Bound



> Example: TSP (min-cost Hamiltonian cycle)
– a Hamiltonian cycle is a connected subgraph with deg(u) = 2 for all nodes u
– bound 1: remove the deg = 2 constraint

> just looking for a way to connect the nodes
> min cost solution is the minimum spanning tree

– bound 2: removing the connectedness constraint
> just looking for deg(u) = 2, i.e., a 2-factor
> min cost solution is the min cost 2-factor
> this can be modeled as a min cost flow problem

– add node capacities with lower = upper = 1
– split the edges to ensure only 1 direction used

Branch & Bound



> Most successful technique in practice

> You want your lower bound to be hard to compute (just not NP-hard)
– (e.g, 2-factor requires solving a min-cost flow problem)
– the harder the problem you are left with, the less you’ve thrown away

> Very easy to apply to integer linear programming problems
– this is a huge class of problems
– includes TSP and most of the other NP-complete problems that

we discussed
> that said, the more problem-specific the bound, the better

Branch & Bound



> Binary Search
> Divide & Conquer
> Dynamic Programming
> Network Flows
> Branch & Bound
> Toolkit

Outline



> These are the tools that have gotten me out of almost every 
difficult algorithms quandary I’ve been stuck in....

Summary



> Problem: given inputs (input1, ..., inputk), compute some output
– i.e., compute a function (input1, ..., inputk) ➝ output

> Ask: would it be easier to compute (input1, ..., output) ➝ inputk?
> Ask: is that function monotonic?

Tool #1: Binary Search



> Ask: would having the solutions to sub-problems on two halves 
of the data make it (truly) easier to solve?

Tool #2: Divide & Conquer



> Ask: how could the optimal solution use the last element of input?
– for each possibility, describe the rest of the optimal solution (without the last 

input) as the optimal solution to a sub-problem

Tool #3: Dynamic Programming



> Ask: is there a way to model the problem with bipartite matchings, 
disjoint paths, or cuts?

Tool #4: Network Flows



> Ask: what is the smallest subset of the constraints I could remove 
to make this problem solvable?

Tool #5: Branch & Bound



Questions?


