CSE 417 Dynamic Programming (pt 6) Parsing Algorithms

Reminders

> HW9 due on Friday

- start early
- program will be slow, so debugging will be slow...
- should run in 2-4 minutes
> Please fill out course evaluations

Dynamic Programming Review

1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you'll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order
> Key question:
4. Can you solve the problem by combining solutions from sub-problems?
> Count sub-problems to determine running time

- total is number of sub-problems times time per sub-problem

Review From Previous Lectures

> Previously...
> Find opt substructure by considering how opt solution could use the last input

- given multiple inputs, consider how opt uses last of either or both
- given clever choice of sub-problems, find opt substructure by considering new options
> Alternatively, consider the shape of the opt solution in general: e.g., tree structured

Today

> Dynamic programming algorithms for parsing

- CKY is an important algorithm and should be understandable
- (everything after that is out of scope)
> If you want to see more examples, my next two favorites are...

1. Optimal code generation (compilers)
2. System R query optimization (databases)

Outline for Today

> Grammars

> CKY Algorithm
> Earley's Algorithm
> Leo Optimization

Grammars

> Grammars are used to understand languages
> Important examples:

- natural languages
- programming languages

Natural Language Grammar

> Example:

Natural Language Grammar

> Input is a list of parts of speech

- noun (N), verb (V), preposition (P), determiner (D), conjunction (C), etc.

Rachael Ray finds inspiration in cooking her family and her dog

Natural Language Grammar

$>$ Output is a tree showing structure

Programming Language Grammar

> Input is a list of "tokens"

- identifiers, numbers, +, -, *, /, etc.

Programming Language Grammar

> Output is a tree showing structure

Programming Language Grammar

> Output is a tree showing structure

Context Free Grammars

> Definition: A context free grammar is a set of rules of the form

$$
\mathrm{A} \rightarrow \mathrm{~B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{k}}
$$

where each B_{i} can be either a token (a "terminal") or another symbol appearing on the left-hand side of one of the rules (a "non-terminal")
> The output of parsing is a tree with leaves labeled by terminals, internal nodes labeled by non-terminals, and the children of internal nodes matching some rule from the grammar

- e.g., can have a node labeled A with children $B_{1}, B_{2}, \ldots, B_{k}$
- want a specific non-terminal ("start" symbol) as the root

Context Free Grammars

> Example grammar for only multiplication:

$$
\begin{aligned}
& F \rightarrow F^{*} N \\
& F \rightarrow N
\end{aligned}
$$

Context Free Grammars

> Example grammar for simple arithmetic expressions:

$$
\begin{aligned}
& \mathrm{F} \rightarrow \mathrm{~F}^{*} \mathrm{~N} \\
& \mathrm{~F} \rightarrow \mathrm{~N} \\
& \mathrm{~T} \rightarrow \mathrm{~T}+\mathrm{F} \\
& \mathrm{~T} \rightarrow \mathrm{~F}
\end{aligned}
$$

Context Free Grammars

$>$ Called "context free" because the rule $A \rightarrow B_{1} B_{2} \ldots B_{k}$ says that A look like $B_{1} B_{2} \ldots B_{k}$ anywhere
$>$ There are more general grammars called "context sensitive"

- parsing those grammars is harder than NP-complete
- (it is PSPACE-complete like generalized chess or go)

Context Free Grammars

> We will limit the sorts of grammars we consider...
$>$ Definition: A grammar is in Chomsky normal form if every rule is in one of these forms:

1. $A \rightarrow B$, where B is a terminal
2. $A \rightarrow B_{1} B_{2}$, where both B_{1} and B_{2} are non-terminals
$>$ In particular, this rules out empty rules: $\mathrm{A} \rightarrow$

- removal of those simplifies things a lot

Context Free Grammars

> Definition: A grammar is in Chomsky normal form if every rule is in one of these forms:

1. $A \rightarrow C$, where C is a terminal
2. $A \rightarrow B_{1} B_{2}$, where both $B 1$ and $B 2$ are non-terminals
> Fact: Any context free grammar can be rewritten into an equivalent one in Chomsky normal form

- hence, we can assume this without loss of generality
- (there can be some blowup in the size of the grammar though...)

Context Free Grammars

> Example grammar for arithmetic in Chomsky normal form

- step 1: remove terminals on right hand side

$$
\begin{array}{lll}
\mathrm{F} \rightarrow \mathrm{~F} * \mathrm{~N} & \mathrm{~T} \rightarrow \mathrm{~T}+\mathrm{F} & \mathrm{~F} \rightarrow \mathrm{~F} * \mathrm{~N} \\
\mathrm{~F} \rightarrow \mathrm{~N} & \mathrm{~T} \rightarrow \mathrm{~F} & \mathrm{~F} \rightarrow \mathrm{~N} \\
\mathrm{~T} \rightarrow \mathrm{~T}+\mathrm{F} & & \\
\mathrm{~T} \rightarrow \mathrm{~F} & &
\end{array}
$$

Context Free Grammars

> Example grammar for arithmetic in Chomsky normal form

- step 1: remove terminals on right hand side

$$
\begin{array}{lll}
\mathrm{F} \rightarrow \mathrm{~F} * \mathrm{~N} & \mathrm{~T} \rightarrow \mathrm{~T} P \mathrm{~F} & \mathrm{~F} \rightarrow \mathrm{FMN} \\
\mathrm{~F} \rightarrow \mathrm{~N} & \mathrm{~T} \rightarrow \mathrm{~F} & \mathrm{~F} \rightarrow \mathrm{~N} \\
\mathrm{~T} \rightarrow \mathrm{~T}+\mathrm{F} & & \\
\mathrm{~T} \rightarrow \mathrm{~F} & \mathrm{M} \rightarrow * & \mathrm{P} \rightarrow+
\end{array}
$$

Context Free Grammars

> Example grammar for arithmetic in Chomsky normal form

- step 2: introduce new non-terminals to replace 3+ on right hand side

$$
\begin{array}{lll}
\mathrm{F} \rightarrow \mathrm{~F} * \mathrm{~N} & \mathrm{~T} \rightarrow \mathrm{~T} P \mathrm{~F} & \mathrm{~F} \rightarrow \mathrm{FMN} \\
\mathrm{~F} \rightarrow \mathrm{~N} & \mathrm{~T} \rightarrow \mathrm{~F} & \mathrm{~F} \rightarrow \mathrm{~N} \\
\mathrm{~T} \rightarrow \mathrm{~T}+\mathrm{F} & & \\
\mathrm{~T} \rightarrow \mathrm{~F} & \mathrm{M} \rightarrow * & \mathrm{P} \rightarrow+
\end{array}
$$

Context Free Grammars

> Example grammar for arithmetic in Chomsky normal form

- step 2: introduce new non-terminals to replace 3+ on right hand side

$$
\begin{aligned}
& F \rightarrow F^{*} N \\
& F \rightarrow N \\
& T \rightarrow T+F \\
& T \rightarrow F
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{T} \rightarrow \mathrm{~T}_{1} \mathrm{~F} & \mathrm{~F} \rightarrow \mathrm{~F}_{1} \mathrm{~N} \\
\mathrm{~T}_{1} \rightarrow \mathrm{TP} & \mathrm{~F}_{1} \rightarrow \mathrm{FM} \\
\mathrm{~T} \rightarrow \mathrm{~F} & \mathrm{~F} \rightarrow \mathrm{~N} \\
& \\
\mathrm{M} \rightarrow * & \mathrm{P} \rightarrow+
\end{array}
$$

Context Free Grammars

> Example grammar for arithmetic in Chomsky normal form

- step 3: eliminate 1 non-terminal on RHS by substitution

$$
\begin{aligned}
& \mathrm{F} \rightarrow \mathrm{~F} * \mathrm{~N} \\
& \mathrm{~F} \rightarrow \mathrm{~N} \\
& \mathrm{~T} \rightarrow \mathrm{~T}+\mathrm{F} \\
& \mathrm{~T} \rightarrow \mathrm{~F}
\end{aligned}
$$

$$
\mathrm{T} \rightarrow \mathrm{~T}_{1} \mathrm{~F}
$$

$$
F \rightarrow F_{1} N
$$

$$
\mathrm{F} \rightarrow \mathrm{~N} \quad \mathrm{~T}_{1} \rightarrow \mathrm{TP}
$$

$$
\mathrm{F}_{1} \rightarrow \mathrm{FM}
$$

$$
\mathrm{T} \rightarrow \mathrm{~F}
$$

$$
F \rightarrow N
$$

$$
M \rightarrow *
$$

$$
P \rightarrow+
$$

Context Free Grammars

> Example grammar for arithmetic in Chomsky normal form

- step 3: eliminate 1 non-terminal on RHS by substitution

$$
\begin{array}{lll}
\mathrm{F} \rightarrow \mathrm{~F} * \mathrm{~N} & \mathrm{~T} \rightarrow \mathrm{~T}_{1} \mathrm{~F} & \mathrm{~F} \rightarrow \mathrm{~F}_{1} \mathrm{~N} \\
\mathrm{~F} \rightarrow \mathrm{~N} & \mathrm{~T}_{1} \rightarrow \mathrm{TP} & \mathrm{~F}_{1} \rightarrow \mathrm{FM} \\
\mathrm{~T} \rightarrow \mathrm{~T}+\mathrm{F} & \mathrm{~T}_{1} \rightarrow \mathrm{FP} & \mathrm{~F} \rightarrow \mathrm{~N} \\
\mathrm{~T} \rightarrow \mathrm{~F} & \mathrm{~T} \rightarrow \mathrm{~F}_{1} \mathrm{~N} & \\
& \mathrm{~T} \rightarrow \mathrm{~N} & \\
& \mathrm{M} \rightarrow * & \mathrm{P} \rightarrow+
\end{array}
$$

Outline for Today

> Grammars
> CKY Algorithm

> Earley's Algorithm
> Leo Optimization

Parsing Context Free Grammars

> Trying to find a tree...
> Q: What technique do we know that might be helpful?
$>$ A: Dynamic programming!

Parsing Context Free Grammars

> Apply dynamic programming...

- to find any tree that matches the data
- (can be generalized to find the "most likely" parse also...)
> Think about what the parse tree for tokens 1 .. n might look like
- root corresponds to some rule A $\rightarrow \mathrm{B}_{1} \mathrm{~B}_{2}$ (Chomsky Normal Form)
- child B_{1} is root of parse tree for some 1 .. k
- child B_{2} is root of parse tree for $k+1$.. n
- (or it could be a leaf $A \rightarrow C$, where C is a terminal, if $n=1$)

Parsing Context Free Grammars

> In general, parse tree for tokens i .. j might look like

- $A \rightarrow C$ if $i=j O R$
- $A \rightarrow B_{1} B_{2}$ where
> child B_{1} is root of parse tree for some $\mathrm{i} . . \mathrm{k}$
> child B_{2} is root of parse tree for $k+1$.. j
> Try each of those possibilities (at most |G|) for each (i,j) pair
- each requires checking $-\mathrm{i}+1$ possibilities for k
- need answers to sub-problem with j - i smaller
> can fill in the table along the diagonals, for example

Cocke-Kasami-Younger (CKY)

> Example table from arithmetic example:

	3	$*$	4	+	5	$*$	6
3	$\mathrm{~F} / \mathrm{T}$						
$*$		M					
4			$\mathrm{~F} / \mathrm{T}$				
+				P			
5					$\mathrm{~F} / \mathrm{T}$		
$\boldsymbol{*}$						M	
6							$\mathrm{~F} / \mathrm{T}$

$$
\begin{aligned}
& T \rightarrow T_{1} F \\
& T \rightarrow F_{1} N \\
& T_{1} \rightarrow T P \\
& T_{1} \rightarrow F P \\
& F \rightarrow F_{1} N \\
& F_{1} \rightarrow F M \\
& T \rightarrow N \\
& F \rightarrow N \\
& M \rightarrow \text { K } \\
& P \rightarrow+ \\
&
\end{aligned}
$$

Cocke-Kasami-Younger (CKY)

> Example table from arithmetic example:

	$\mathbf{3}$	$\boldsymbol{*}$	$\mathbf{4}$	$\mathbf{+}$	$\mathbf{5}$	$\boldsymbol{*}$	$\mathbf{6}$
$\mathbf{3}$	F / T	$-\mathrm{F}_{1}$					
$\boldsymbol{*}$		M					
$\mathbf{4}$			F / T	T_{1}			
$\boldsymbol{+}$				P			
$\mathbf{5}$					F / T	$-\mathrm{F}_{1}$	
$\boldsymbol{*}$						M	
$\mathbf{6}$							F / T

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{~T}_{1} \mathrm{~F} \\
& \mathrm{~T} \rightarrow \mathrm{~F}_{1} \mathrm{~N} \\
& \mathrm{~T}_{1} \rightarrow \mathrm{~T} P \\
& \mathrm{~T}_{1} \rightarrow \mathrm{FP} \\
& \mathrm{~F} \rightarrow \mathrm{~F}_{1} \mathrm{~N} \\
& \mathrm{~F}_{1} \rightarrow \mathrm{FM} \\
& \mathrm{~T} \rightarrow \mathrm{~N} \\
& \mathrm{~F} \rightarrow \mathrm{~N} \\
& \mathrm{M} \rightarrow \text { * } \\
& \mathrm{P} \rightarrow+ \\
&
\end{aligned}
$$

Cocke-Kasami-Younger (CKY)

> Example table from arithmetic example:

	$\mathbf{3}$	$\boldsymbol{*}$	$\mathbf{4}$	$\mathbf{+}$	$\mathbf{5}$	$\boldsymbol{*}$	$\mathbf{6}$
$\mathbf{3}$	F / T	F_{1}	$\mathrm{~F} / \mathrm{T}$				
$\boldsymbol{*}$		M					
$\mathbf{4}$			F / T	T_{1}	T		
+				P			
$\mathbf{5}$					F / T	F_{1}	$\mathrm{~F} / \mathrm{T}$
$\boldsymbol{*}$						M	
$\mathbf{6}$							F / T

$\mathrm{T} \rightarrow \mathrm{T}_{1} \mathrm{~F}$
$\mathrm{T} \rightarrow \mathrm{F}_{1} \mathrm{~N}$
$\mathrm{T}_{1} \rightarrow \mathrm{TP}$
$\mathrm{T}_{1} \rightarrow \mathrm{FP}$
$\mathrm{F} \rightarrow \mathrm{F}_{1} \mathrm{~N}$
$\mathrm{F}_{1} \rightarrow \mathrm{FM}$
$\mathrm{T} \rightarrow \mathrm{N}$
$\mathrm{F} \rightarrow \mathrm{N}$
$M \rightarrow$ *
P $\rightarrow+$
w

Cocke-Kasami-Younger (CKY)

> Example table from arithmetic example:

	$\mathbf{3}$	$\boldsymbol{*}$	$\mathbf{4}$	$\mathbf{+}$	$\mathbf{5}$	$\boldsymbol{*}$	$\mathbf{6}$
$\mathbf{3}$	F / T	F_{1}	$\mathrm{~F} / \mathrm{T}$	T_{1}			
$\boldsymbol{*}$		M					
$\mathbf{4}$			F / T	T_{1}	T		
$\boldsymbol{+}$				P			
$\mathbf{5}$					F / T	F_{1}	$\mathrm{~F} / \mathrm{T}$
$\boldsymbol{*}$						M	
$\mathbf{6}$							F / T

$$
\begin{aligned}
& T \rightarrow T_{1} F \\
& T \rightarrow F_{1} N \\
& T_{1} \rightarrow T P \\
& T_{1} \rightarrow F P \\
& F \rightarrow F_{1} N \\
& F_{1} \rightarrow F M \\
& T \rightarrow N \\
& F \rightarrow N \\
& M \rightarrow \text { K } \\
& P \rightarrow+ \\
&
\end{aligned}
$$

Cocke-Kasami-Younger (CKY)

> Example table from arithmetic example:

	3	*	4	+	5	*	6
3	F/T	F_{1}	F/T	T_{1}			
*		M					
4			F/T	T	7		
+				P			
5					F/T	F_{1}	F/T
*						M	
6							F/T

$$
\begin{aligned}
& T \rightarrow T_{1} F \\
& T \rightarrow F_{1} N \\
& T_{1} \rightarrow T P \\
& T_{1} \rightarrow F P \\
& F \rightarrow F_{1} N \\
& F_{1} \rightarrow F M \\
& T \rightarrow N \\
& F \rightarrow N \\
& M \rightarrow \text { * } \\
& P \rightarrow+ \\
& \text { P }
\end{aligned}
$$

Cocke-Kasami-Younger (CKY)

> Example table from arithmetic example:

	$\mathbf{3}$	$\boldsymbol{*}$	$\mathbf{4}$	$\mathbf{+}$	$\mathbf{5}$	$\boldsymbol{*}$	$\mathbf{6}$
$\mathbf{3}$	F / T	F_{1}	$\mathrm{~F} / \mathrm{T}$	T_{1}	T		T
$\boldsymbol{*}$		M					
$\mathbf{4}$			F / T	T_{1}	T		
$\mathbf{+}$				P			
$\mathbf{5}$					F / T	F_{1}	$\mathrm{~F} / \mathrm{T}$
$\boldsymbol{*}$						M	
$\mathbf{6}$							F / T

$$
\begin{aligned}
& T \rightarrow T_{1} F \\
& T \rightarrow F_{1} N \\
& T_{1} \rightarrow T P \\
& T_{1} \rightarrow F P \\
& F \rightarrow F_{1} N \\
& F_{1} \rightarrow F M \\
& T \rightarrow N \\
& F \rightarrow N \\
& M \rightarrow \text { K } \\
& P \rightarrow+ \\
&
\end{aligned}
$$

Cocke-Kasami-Younger (CKY)

$\mathrm{T} \rightarrow \mathrm{T}_{1} \mathrm{~F}$
$\mathrm{T} \rightarrow \mathrm{F}_{1} \mathrm{~N}$
$\mathrm{T}_{1} \rightarrow \mathrm{TP}$
$\mathrm{T}_{1} \rightarrow \mathrm{FP}$
$\mathrm{F} \rightarrow \mathrm{F}_{1} \mathrm{~N}$
$\mathrm{F}_{1} \rightarrow \mathrm{FM}$
$\mathrm{T} \rightarrow \mathrm{N}$
$\mathrm{F} \rightarrow \mathrm{N}$
$M \rightarrow$ *
P $\rightarrow+$
w

Cocke-Kasami-Younger (CKY)

$>$ Running time is $\mathrm{O}\left(|\mathrm{G}| \mathrm{n}^{3}\right)$

- in NLP, |G| >> n, so this is great
- in $P L,|G|<n$, so this is not great
- in algorithms, this is usually considered $O\left(n^{3}\right)$ since $|G|$ is a "constant"
> I will follow this convention for the rest of the lecture...
> Algorithm easily generalizes to find "most likely" parse tree
- frequently used in NLP case

Outline for Today

> Grammars
> CKY Algorithm
> Earley's Algorithm

> Leo Optimization

Improving CKY (out of scope)

> CKY is not optimal even for general grammars...

- (can be improved using fast matrix multiplication)
> PLUS we know that certain grammars can be parsed much faster
> In particular, there exist $\mathrm{O}(\mathrm{n})$ algorithms for typical PL grammars
- $O\left(n^{3}\right)$ was out of the question in 1965...
> Arithmetic example is one of those
- notice how the table is mostly blank
- that's a lot of wasted effort

Improving CKY

> To get to $\mathrm{O}(\mathrm{n})$, we cannot fill in an $\mathrm{n} \times \mathrm{n}$ table

- doing so always requires $\Omega\left(n^{2}\right)$ time

Improving CKY

> Idea: coalesce columns...

	$\mathbf{3}$	$\boldsymbol{*}$	$\mathbf{4}$	$\mathbf{+}$	$\mathbf{5}$	$\boldsymbol{*}$	$\mathbf{6}$
$\mathbf{3}$	$\mathrm{N} / \mathrm{F} / \mathrm{T}$	F_{1}	$\mathrm{~F} / \mathrm{T}$	T_{1}	T		T
$\boldsymbol{*}$		M					
$\mathbf{4}$			$\mathrm{N} / \mathrm{F} / \mathrm{T}$				
$\boldsymbol{+}$				P			
$\mathbf{5}$					$\mathrm{N} / \mathrm{F} / \mathrm{T}$	F_{1}	$\mathrm{~F} / \mathrm{T}$
$\boldsymbol{*}$						M	
$\mathbf{6}$							$\mathrm{N} / \mathrm{F} / \mathrm{T}$

W

Improving CKY

> Idea: coalesce columns...

- let I_{j} include everything in the column j
- these are rules that parse i ..j for some i
> Need to remember i as well
- write entries of I_{j} as "A (i)", recording both symbol and where parsing started

Improving CKY

$>$ Now we fill in the sets $I_{1}, I_{2}, \ldots, I_{n}$

- parsing left to right
> If we are lucky enough to get $\left|\mathrm{I}_{\mathrm{j}}\right|=\mathrm{O}(1)$ for all j , this could be a linear time algorithm
- assuming we can build l_{j} in $\mathrm{O}(1)$ time
> Latter means we cannot look at all previous I_{j} 's
- probably need to only look at $\mathrm{l}_{\mathrm{j}-1}$

Improving CKY: False Start

> Suppose I_{j} is the set of "A (i)" where A matches i .. j
> How do we build I_{j} ?
$>$ If N is the j-th symbol of input, add " $A(j)$ " for every $A \rightarrow N$ rule
$>$ What next?
> If "C (k)" is in I_{j}, we might need to add " $\mathrm{A}(\mathrm{i})$ " for any $\mathrm{A} \rightarrow \mathrm{BC}$...

- "A (i)" should be added if "B (i)" is in I_{k}
- it takes $O(n)$ time to try every k in 1 .. j-1
- so we are back to $\Omega\left(n^{2}\right)$

Improving CKY

> To get $\mathrm{O}(\mathrm{n})$, we need to keep track of anything we might need to use later on in order to complete the parsing of a rule
> Specifically, if we have parsed "B (i)", we need to keep track of the fact that it could be used to get an $A \rightarrow B C$ (i) if we later see C
> We write this fact as "A $\rightarrow B \cdot \mathrm{C}$ (i)", which, in I_{j}, means that we have parsed the B part at i .. j

- (the "C" part can be missing here
i.e., if the rule is $A \rightarrow B$, where B is a non-terminal)

Improved Parser

> Let I_{j} be the set of elements like " $\mathrm{A} \rightarrow \mathrm{B} \cdot \mathrm{C}(\mathrm{i})$ ", where:

1. B matches input tokens i .. j
2. It is possible for A to follow something that matches input tokens 1 .. $\mathrm{i}-1$
> Note that "." can be at beginning, middle, or end

- (we may as well drop the limit of only 2 symbols on the RHS)
> Second part is another optimization
- don't waste time trying to parse rules that aren't useful based on what came earlier

Improved Parser

> Let I_{j} be the set of elements like " $\mathrm{A} \rightarrow \mathrm{B} \cdot \mathrm{C}(\mathrm{i})$ ", where:

1. B matches input tokens $\mathrm{i} . . \mathrm{j}$
2. It is possible for A to follow something that matches input tokens 1 .. i-1
> Fill in I_{j} as follows:

- add anything that could follow $\mathrm{I}_{\mathrm{j}-1}$ and matches input token j
$>$ (if " $A \rightarrow B \cdot C$ (i)" is in I_{j-1}, then C could follow)
- for each added complete item " $\mathrm{A} \rightarrow \mathrm{BC} \cdot(\mathrm{i})$ " added: \sim only part that is potentially slow...
$>$ if I_{i} contains " A ' $\rightarrow B \cdot A\left(i^{\prime}\right)^{\prime}$ ", then add " A ' $\rightarrow B A \cdot\left(i^{\prime}\right)^{\prime}$ " to I_{j}
$>$ (likewise for " A ' $\rightarrow \mathrm{A}\left(\mathrm{i}^{\prime}\right)^{\prime}$ ")
- add all those items that could follow the ones already added

Improved Parser

> Fill in I_{j} as follows:

- add anything that could follow $\mathrm{I}_{\mathrm{j}-1}$ and matches input token j
$>$ (if "A $\rightarrow B \cdot C$ (i)" is in I_{j-1}, then C could follow)
- for each added complete item "A $\rightarrow \mathrm{BC} \cdot(\mathrm{i})$ " added:
$>$ if I_{i} contains " A ' $\rightarrow B \cdot A\left(i^{\prime}\right)^{\prime}$, then add " A ' $\rightarrow B A \cdot(i)^{\prime}$ " to I_{j}
$>$ (likewise for " A ' $\rightarrow \mathrm{A}\left(\mathrm{i}^{\prime}\right)^{\prime}$ ")
- add all those items that could follow the ones already added
> If all $\left|I_{j}\right|$'s are size $O(1)$, then this is $\mathrm{O}(1)$ time per item
- hence, O(n) over all

Earley's algorithm

> This version is called Earley's algorithm
> It was developed independently of CKY by Earley

- (relation to CKY was noted by Ruzzo et al.)
- also considered a dynamic programming algorithm
> the sub-problems being solved are not quite so obvious as in CKY

Earley's algorithm

> Can be shown that Earley's algorithm runs in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time for any unambiguous grammar

- meaning there is only one possible parse tree
> typical of PL grammars (though not NLP grammars)
> Can also be shown it runs in $\mathrm{O}(\mathrm{n})$ time for nice $\mathrm{LR}(\mathrm{k})$ grammars
> BUT not for all LR(k) grammars
- latter can be parsed in $O(n)$ time by other algorithms
> The running time is at least the sum of sizes of the l_{j} 's...

Outline for Today

> Grammars
> CKY Algorithm
> Earley's Algorithm
> Leo Optimization

Bad Cases for Earley

> Q: Can the lj's be O(n) for some unambiguous grammar's?

Bad Cases for Earley

> Q: Can the li's be O(n) for some unambiguous grammar's?
> A: Unfortunately, yes

$$
\begin{aligned}
& A \rightarrow a \\
& B \rightarrow b \\
& B \rightarrow A B
\end{aligned}
$$

$>$ All B's completed in I_{n}

Bad Cases for Earley

> Q: Can the lj's be O(n) for some unambiguous grammar's?
> A: Unfortunately, yes
> This is a "right recursive grammar"
> Fortunately, these are the only bad cases ($\mathrm{O}(\mathrm{n}$) otherwise)
> Grammars can be usually be rewritten to avoid it

Joop Leo's Optimization

> Alternatively, we can improve the algorithm to handle those...
> Leo makes the following optimization:

- only record the top-most item in a tall stack like this
- (actually $\mathrm{O}(1)$ copies of it depending on how we might look for it later)
> Can then show that the l_{j} 's are $\mathrm{O}(1)$ size
- number with dot not at end is $\mathrm{O}(1)$ due to $\operatorname{LR}(\mathrm{k})$ property
- clever argument shows number with dot at end is also $\mathrm{O}(1)$
> removing stacks leaves tree with all $2+$ children and leaves those above
> (furthermore, each is discovered only once for unambiguous grammars)

Joop Leo's Optimization

> Alternatively, we can improve the algorithm to handle those...
> Leo makes the following optimization:

- only record the top-most item in a tall stack like this
- (actually $\mathrm{O}(1)$ copies of it depending on how we might look for it later)
> Result is $\mathrm{O}(\mathrm{n})$ in the worst case for $\mathrm{LR}(\mathrm{k})$
- (i.e., for anything parsable by deterministic push-down automaton
- covers almost every PL grammar

Parsers in Practice

$>$ CKY and Earley are used in NLP

- recall that $|G|$ is usually larger there
> In PL, we typically use special grammars (e.g., LR(k)) that can be parsed in linear time
- LR(k) was invented by Don Knuth
- parses anything that can be parsed by a deterministic push-down automaton
> Earley + Leo gives the same asymptotic performance
- expect it to see more use given speed of computers
- (LR parsing was developed for machines $10 \mathrm{k} \times$ slower)

