CSE 417 Dynamic Programming (pt 6) Parsing Algorithms

UNIVERSITY of WASHINGTON

Reminders

> HW9 due on Friday

- start early
- program will be slow, so debugging will be slow...
- should run in 2-4 minutes

> Please fill out course evaluations

Dynamic Programming Review

> Apply the steps...

optimal substructure: (small) set of solutions, constructed from solutions to sub-problems that is guaranteed to include the optimal one

- 1. Describe solution in terms of solution to *any* sub-problems
- 2. Determine all the sub-problems you'll need to apply this recursively
- 3. Solve every sub-problem (once only) in an appropriate order

> Key question:

- 1. Can you solve the problem by combining solutions from sub-problems?
- > Count sub-problems to determine running time
 - total is number of sub-problems times time per sub-problem

Review From Previous Lectures

- > Previously...
- > Find opt substructure by considering how opt solution could use the last input
 - given multiple inputs, consider how opt uses last of either or both
 - given clever choice of sub-problems, find opt substructure by considering new options
- > Alternatively, consider the shape of the opt solution in general: e.g., tree structured

- > Dynamic programming algorithms for parsing
 - CKY is an important algorithm and should be understandable
 - (everything after that is out of scope)
- > If you want to see more examples, my next two favorites are...
 - 1. Optimal code generation (compilers)
 - 2. System R query optimization (databases)

Outline for Today

> Grammars
> CKY Algorithm
> Earley's Algorithm

> Leo Optimization

> Grammars are used to understand languages

- > Important examples:
 - natural languages
 - programming languages

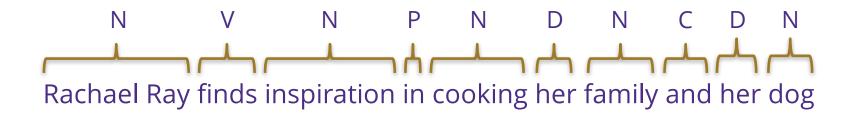
Natural Language Grammar

> Example:

Natural Language Grammar

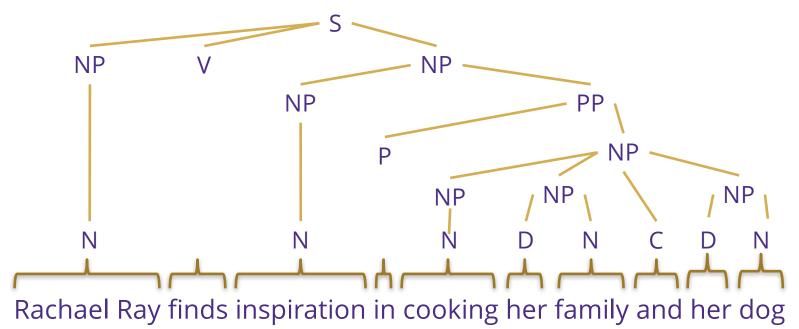
> Input is a list of parts of speech

- noun (N), verb (V), preposition (P), determiner (D), conjunction (C), etc.



Natural Language Grammar

> Output is a tree showing structure



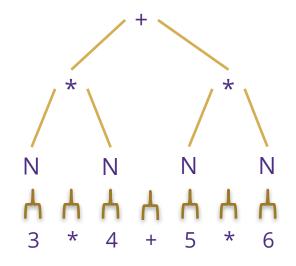
Programming Language Grammar

- > Input is a list of "tokens"
 - identifiers, numbers, +, -, *, /, etc.

N * N + N * N **h h h h h** 3 * 4 + 5 * 6

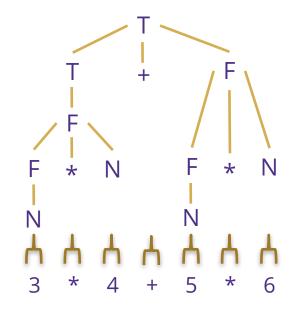
Programming Language Grammar

> Output is a tree showing structure



Programming Language Grammar

> Output is a tree showing structure



> **Definition**: A context free grammar is a <u>set</u> of rules of the form

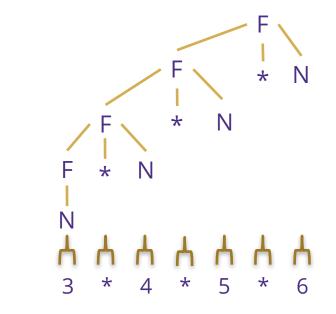
 $A \rightarrow B_1 B_2 \dots B_k$

where each B_i can be either a <u>token</u> (a "terminal") or another symbol appearing on the left-hand side of one of the rules (a "non-terminal")

- > The output of parsing is a tree with leaves labeled by terminals, internal nodes labeled by non-terminals, and the children of internal nodes matching some rule from the grammar
 - e.g., can have a node labeled A with children B_1 , B_2 , ..., B_k
 - want a specific non-terminal ("start" symbol) as the root

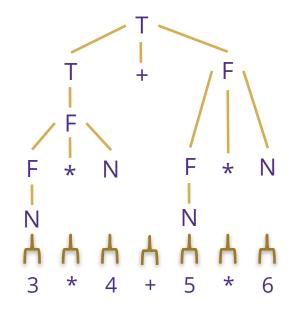
> Example grammar for only multiplication:

 $F \rightarrow F * N$ $F \rightarrow N$



- > Example grammar for simple arithmetic expressions:
 - $F \rightarrow F * N$ $F \rightarrow N$

 $T \rightarrow T + F$ $T \rightarrow F$



> Called "context free" because the rule $A \rightarrow B_1 B_2 \dots B_k$ says that A look like $B_1 B_2 \dots B_k$ anywhere

W

- > There are more general grammars called "context sensitive"
 - parsing those grammars is <u>harder</u> than NP-complete
 - (it is PSPACE-complete like generalized chess or go)

> We will limit the sorts of grammars we consider...

- > **Definition**: A grammar is in Chomsky normal form if *every* rule is in one of these forms:
 - 1. $A \rightarrow B$, where B is a terminal
 - 2. $A \rightarrow B_1 B_2$, where both B_1 and B_2 are non-terminals
- > In particular, this rules out empty rules: A \rightarrow
 - removal of those simplifies things a lot

- > **Definition**: A grammar is in Chomsky normal form if every rule is in one of these forms:
 - 1. $A \rightarrow C$, where C is a terminal
 - 2. $A \rightarrow B_1 B_2$, where both B1 and B2 are non-terminals
- Fact: Any context free grammar can be rewritten into an equivalent one in Chomsky normal form
 - hence, we can assume this without loss of generality
 - (there can be some blowup in the size of the grammar though...)

> Example grammar for arithmetic in Chomsky normal form

- step 1: remove terminals on right hand side

$F \rightarrow F * N$
$F \rightarrow N$
$T \rightarrow T + F$
T → F

$$T \rightarrow T + F$$
$$T \rightarrow F$$

$$F \rightarrow F * N$$
$$F \rightarrow N$$

W

> Example grammar for arithmetic in Chomsky normal form

- step 1: remove terminals on right hand side

F → F * N	$T \rightarrow T P F$	$F \rightarrow F M N$
$F \rightarrow N$	$T \rightarrow F$	$F \rightarrow N$
$T \rightarrow T + F$		
$T \rightarrow F$	$M \rightarrow \star$	P → +

> Example grammar for arithmetic in Chomsky normal form

step 2: introduce new non-terminals to replace 3+ on right hand side

F → F * N	$T \rightarrow T P F$	$F \rightarrow F M N$
$F \rightarrow N$	$T \rightarrow F$	$F \rightarrow N$
$T \rightarrow T + F$		
$T \rightarrow F$	$M \rightarrow \star$	$P \rightarrow +$

> Example grammar for arithmetic in Chomsky normal form

step 2: introduce new non-terminals to replace 3+ on right hand side

$F \rightarrow F * N$	$T \rightarrow T_1 F$	$F \rightarrow F_1 N$
$F \rightarrow N$	$T_1 \rightarrow T P$	$F_1 \rightarrow F M$
$T \rightarrow T + F$	$T \rightarrow F$	$F \rightarrow N$
$T \rightarrow F$		
	$M \rightarrow \star$	P → +

> Example grammar for arithmetic in Chomsky normal form

- step 3: eliminate 1 non-terminal on RHS by substitution

$F \rightarrow F * N$	$T \rightarrow T_1 F$	$F \rightarrow F_1 N$
$F \rightarrow N$	$T_1 \rightarrow T P$	$F_1 \rightarrow F M$
$T \rightarrow T + F$	$T \rightarrow F$	$F \rightarrow N$
$T \rightarrow F$		
	$M \rightarrow \star$	P → +

> Example grammar for arithmetic in Chomsky normal form

- step 3: eliminate 1 non-terminal on RHS by substitution

$F \rightarrow F * N$	$T \rightarrow T_1 F$	$F \rightarrow F_1 N$
$F \rightarrow N$	$T_1 \rightarrow T P$	$F_1 \rightarrow F M$
$T \rightarrow T + F$	$T_1 \rightarrow F P$	$F \rightarrow N$
$T \rightarrow F$	$T \rightarrow F_1 N$	
	$T \rightarrow N$	
	$\mathbb{M} \rightarrow *$	P → +

Outline for Today

- > Grammars
- > CKY Algorithm
- > Earley's Algorithm
- > Leo Optimization

Parsing Context Free Grammars

- > Trying to find a tree...
- > **Q**: What technique do we know that might be helpful?
- > **A**: Dynamic programming!

Parsing Context Free Grammars

- > Apply dynamic programming...
 - to find any tree that matches the data
 - (can be generalized to find the "most likely" parse also...)
- > Think about what the parse tree for tokens 1 .. n might look like
 - − root corresponds to some rule $A \rightarrow B_1 B_2$ (Chomsky Normal Form)
 - child B_1 is root of parse tree for some 1 .. k
 - child B₂ is root of parse tree for k+1 .. n
 - (or it could be a leaf A \rightarrow C, where C is a terminal, if n=1)

Parsing Context Free Grammars

- > In general, parse tree for tokens i .. j might look like
 - $A \rightarrow C \text{ if } i = j OR$
 - $A \rightarrow B_1 B_2$ where
 - > child B_1 is root of parse tree for some i .. k
 - > child B_2 is root of parse tree for k+1 .. j
- > Try each of those possibilities (at most |G|) for each (i,j) pair
 - each requires checking j i + 1 possibilities for k
 - need answers to sub-problem with j i smaller
 - > can fill in the table along the diagonals, for example

> Example table from arithmetic example:

	3	*	4	+	5	*	6
3	F/T						
*		М					
4			F/T				
+				Р			
5					F/T		
*						М	
6							F/T

> Example table from arithmetic example:

	3	*	4	+	5	*	6
3	F/T	- F ₁					
*		M					
4			F/T	T ₁			
+				Р			
5					F/T ·	- F ₁	
*						М	
6							F/T

> Example table from arithmetic example:

	3	*	4	+	5	*	6
3	F/T	F ₁	— F/T				
*		М					
4			F/T	T ₁	Т		
+				Р			
5					F/T	F ₁ —	— F/T
*						М	
6							F/T

> Example table from arithmetic example:

	3	*	4	+	5	*	6
3	F/T	F_1	F/T	— T ₁			
*		М					
4			F/T	7' ₁	Т		
+				Р			
5					F/T	F_1	F/T
*						М	
6							F/T

> Example table from arithmetic example:

	3	*	4	+	5	*	6
3	F/T	F_1	F/T	T ₁ —	— т		
*		М					
4			F/T	T ₁	T		
+				Р			
5					F/T	F_1	F/T
*						М	
6							F/T

> Example table from arithmetic example:

	3	*	4	+	5	*	6
3	F/T	F ₁	F/T	T ₁	т —		— T
*		М					
4			F/T	T ₁	Т		
+				Р			
5					F/T	F_1	F/T
*						М	
6							F/T

> Can reconstruct the tree from the table as usual.

	3	*	4	+	5	*	6
3	F/T	F_1	F/T	T ₁	т —		— T
*		М					
4			F/T	T ₁	Т		
+				Р			
5					F/T	F ₁	F/T
*						М	
6							F/T

Cocke-Kasami-Younger (CKY)

- > Running time is $O(|G| n^3)$
 - in NLP, |G| >> n, so this is great
 - in PL, |G| < n, so this is not great
 - in algorithms, this is usually considered $O(n^3)$ since |G| is a "constant"
 - > I will follow this convention for the rest of the lecture...
- > Algorithm easily generalizes to find "most likely" parse tree
 - frequently used in NLP case

Outline for Today

- > Grammars
- > CKY Algorithm
- > Earley's Algorithm
- > Leo Optimization

Improving CKY (out of scope)

- > CKY is not optimal even for general grammars...
 - (can be improved using fast matrix multiplication)
- > PLUS we know that certain grammars can be parsed much faster
- > In particular, there exist O(n) algorithms for typical PL grammars
 - O(n³) was out of the question in 1965...
- > Arithmetic example is one of those
 - notice how the table is mostly blank
 - that's a lot of wasted effort

> To get to O(n), we cannot fill in an n x n table

- doing so always requires $\Omega(n^2)$ time

> Idea: coalesce columns...

	3	*	4	+	5	*	6
3	N/F/T	F ₁	F/T	T ₁	Т		т
*		М					
4			N/F/T				
+				Р			
5					N/F/T	F_1	F/T
*						М	
6							N/F/T

- > Idea: coalesce columns...
 - let I_j include everything in the column j
 - these are rules that parse i .. j for some i
- > Need to remember i as well
 - write entries of I_j as "A (i)", recording both symbol and where parsing started

W

> Now we fill in the sets I_1 , I_2 , ..., I_n

- parsing left to right
- > If we are lucky enough to get $|I_j| = O(1)$ for all j, this *could* be a linear time algorithm
 - assuming we can build I_j in O(1) time
- > Latter means we <u>cannot</u> look at *all previous* I_i's
 - probably need to only look at I_{j-1}

Improving CKY: False Start

> Suppose I_i is the set of "A (i)" where A matches i .. j

- > How do we build I_i ?
- > If N is the j-th symbol of input, add "A (j)" for every A \rightarrow N rule

> What next?

- > If "C (k)" is in I_{i} , we might need to add "A (i)" for any A \rightarrow B C...
 - "A (i)" should be added if "B (i)" is in I_k
 - it takes O(n) time to try every k in 1 .. j-1
 - so we are back to $\Omega(n^2)$

- > To get O(n), we need to keep track of anything we might need to use later on in order to complete the parsing of a rule
- > Specifically, if we have parsed "B (i)", we need to keep track of the fact that it could be used to get an $A \rightarrow B C$ (i) if we later see C
- > We write this fact as "A \rightarrow B \cdot C (i)", which, in I_j, means that we have parsed the B part at i .. j
 - (the "C" part can be missing here i.e., if the rule is A → B, where B is a non-terminal)

Improved Parser

- > Let I_i be the set of elements like "A \rightarrow B \cdot C (i)", where:
 - 1. B matches input tokens i .. j
 - 2. It is possible for A to follow something that matches input tokens 1 .. i-1
- > Note that "." can be at beginning, middle, or end
 - (we may as well drop the limit of only 2 symbols on the RHS)
- > Second part is another optimization
 - don't waste time trying to parse rules that aren't useful based on what came earlier

Improved Parser

- > Let I_i be the set of elements like "A \rightarrow B \cdot C (i)", where:
 - 1. B matches input tokens i .. j
 - 2. It is possible for A to follow something that matches input tokens 1 .. i-1

> Fill in I_i as follows:

- add anything that could follow I_{j-1} and matches input token j > (if "A → B · C (i)" is in I_{j-1} , then C could follow)
- for each added *complete* item " $A \rightarrow B C \cdot (i)$ " added: only part that is potentially slow...
 - > if I_i contains "A' \rightarrow B \cdot A (i')", then add "A' \rightarrow B A \cdot (i')" to I_j
 - > (likewise for "A' $\rightarrow \cdot$ A (i')")
- add all those items that could follow the ones already added

Improved Parser

- > Fill in I_i as follows:
 - add anything that could follow I_{j-1} and matches input token j
 > (if "A → B · C (i)" is in I_{j-1}, then C could follow)
 - for each added *complete* item "A \rightarrow B C \cdot (i)" added:
 - > if I_i contains "A' \rightarrow B \cdot A (i')", then add "A' \rightarrow B A \cdot (i')" to I_j
 - > (likewise for "A' $\rightarrow \cdot$ A (i')")
 - add all those items that could follow the ones already added
- If all |I_j|'s are size O(1), then this is O(1) time per item
 hence, O(n) over all

Earley's algorithm

> This version is called Earley's algorithm

- > It was developed independently of CKY by Earley
 - (relation to CKY was noted by Ruzzo et al.)
 - also considered a dynamic programming algorithm
 - > the sub-problems being solved are not quite so obvious as in CKY

W

Earley's algorithm

- > Can be shown that Earley's algorithm runs in O(n²) time for any unambiguous grammar
 - meaning there is only one possible parse tree
 - > typical of PL grammars (though not NLP grammars)
- > Can also be shown it runs in O(n) time for **nice** LR(k) grammars
- > BUT not for all LR(k) grammars
 - latter can be parsed in O(n) time by other algorithms
- > The running time is at least the sum of sizes of the I_i's...

Outline for Today

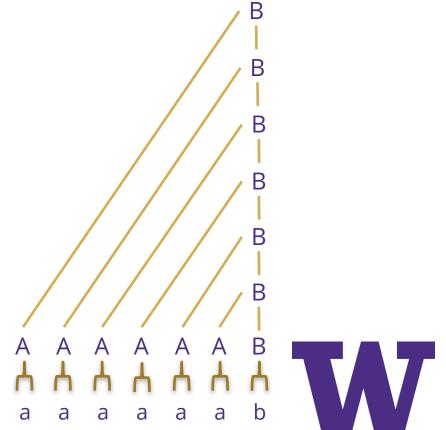
- > Grammars
- > CKY Algorithm
- > Earley's Algorithm
- > Leo Optimization

Bad Cases for Earley

> Q: Can the Ij's be O(n) for some unambiguous grammar's?

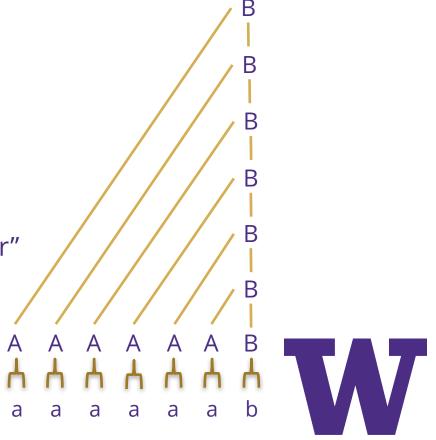
Bad Cases for Earley

- > Q: Can the Ij's be O(n) for some unambiguous grammar's?
- > **A**: Unfortunately, yes
 - $A \rightarrow a$ $B \rightarrow b$ $B \rightarrow A B$
- > All B's completed in I_n



Bad Cases for Earley

- > Q: Can the Ij's be O(n) for some unambiguous grammar's?
- > A: Unfortunately, yes
- > This is a "right recursive grammar"
- > Fortunately, these are the only bad cases (O(n) otherwise)
- > Grammars can be usually be rewritten to avoid it



Joop Leo's Optimization

> Alternatively, we can improve the algorithm to handle those...

- > Leo makes the following optimization:
 - only record the top-most item in a tall stack like this
 - (actually O(1) copies of it depending on how we might look for it later)
- > Can then show that the I_i's are O(1) size
 - number with dot <u>not</u> at end is O(1) due to LR(k) property
 - clever argument shows number with dot at end is also O(1)
 - > removing stacks leaves tree with all 2+ children and leaves those above
 - > (furthermore, each is discovered only once for unambiguous grammars)

Joop Leo's Optimization

> Alternatively, we can improve the algorithm to handle those...

- > Leo makes the following optimization:
 - only record the top-most item in a tall stack like this
 - (actually O(1) copies of it depending on how we might look for it later)
- > Result is O(n) in the worst case for LR(k)
 - (i.e., for anything parsable by deterministic push-down automaton
 - covers almost every PL grammar

Parsers in Practice

> CKY and Earley are used in NLP

- recall that |G| is usually larger there
- > In PL, we typically use special grammars (e.g., LR(k)) that can be parsed in linear time
 - LR(k) was invented by Don Knuth
 - parses anything that can be parsed by a deterministic push-down automaton
- > Earley + Leo gives the same asymptotic performance
 - expect it to see more use given speed of computers
 - (LR parsing was developed for machines 10k x slower)

