
CSE 417
Dynamic Programming (pt 6)
Parsing Algorithms

> HW9 due on Friday
– start early
– program will be slow, so debugging will be slow...
– should run in 2-4 minutes

> Please fill out course evaluations

Reminders

> Apply the steps...
1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you’ll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order

> Key question:
1. Can you solve the problem by combining solutions from sub-problems?

> Count sub-problems to determine running time
– total is number of sub-problems times time per sub-problem

Dynamic Programming Review
optimal substructure: (small) set of solutions,
constructed from solutions to sub-problems
that is guaranteed to include the optimal one

> Previously...

> Find opt substructure by considering how opt solution
could use the last input
– given multiple inputs, consider how opt uses last of either or both
– given clever choice of sub-problems, find opt substructure by considering new options

> Alternatively, consider the shape of the opt solution
in general: e.g., tree structured

Review From Previous Lectures

> Dynamic programming algorithms for parsing
– CKY is an important algorithm and should be understandable
– (everything after that is out of scope)

> If you want to see more examples, my next two favorites are...
1. Optimal code generation (compilers)
2. System R query optimization (databases)

Today

> Grammars
> CKY Algorithm
> Earley’s Algorithm
> Leo Optimization

Outline for Today

> Grammars are used to understand languages

> Important examples:
– natural languages
– programming languages

Grammars

> Example:

Natural Language Grammar

Rachael Ray finds inspiration in cooking her family and her dog

Natural Language Grammar

N V N P N CD DN N

> Input is a list of parts of speech
– noun (N), verb (V), preposition (P), determiner (D), conjunction (C), etc.

Natural Language Grammar

> Output is a tree showing structure

Rachael Ray finds inspiration in cooking her family and her dog

N

V

N

P

N CD DN N

S

NP
NP PP

NPNPNP

NP

NP

> Input is a list of ”tokens”
– identifiers, numbers, +, -, *, /, etc.

Programming Language Grammar

3 * 4 + 5 * 6

N * N N * N+

> Output is a tree showing structure

Programming Language Grammar

3 * 4 + 5 * 6

N

*

N N

+

*

N

> Output is a tree showing structure

Programming Language Grammar

3 * 4 + 5 * 6

N

* N

N

+

F

F

* NF

FT

T

> Definition: A context free grammar is a set of rules of the form

A ➞ B1 B2 ... Bk

where each Bi can be either a token (a “terminal”) or another symbol appearing
on the left-hand side of one of the rules (a “non-terminal”)

> The output of parsing is a tree with leaves labeled by terminals,
internal nodes labeled by non-terminals, and the children of
internal nodes matching some rule from the grammar
– e.g., can have a node labeled A with children B1, B2, ..., Bk

– want a specific non-terminal (“start” symbol) as the root

Context Free Grammars

> Example grammar for only multiplication:

F ➞ F * N
F ➞ N

Context Free Grammars

3 * 4 * 5 * 6

N

* N

N*

F

F

* N

F

F

> Example grammar for simple arithmetic expressions:

F ➞ F * N
F ➞ N

T ➞ T + F
T ➞ F

Context Free Grammars

3 * 4 + 5 * 6

N

* N

N

+

F

F

* NF

FT

T

> Called “context free” because the rule A ➞ B1 B2 ... Bk says that
A look like B1 B2 ... Bk anywhere

> There are more general grammars called “context sensitive”
– parsing those grammars is harder than NP-complete
– (it is PSPACE-complete like generalized chess or go)

Context Free Grammars

> We will limit the sorts of grammars we consider...

> Definition: A grammar is in Chomsky normal form if every rule is
in one of these forms:

1. A ➞ B, where B is a terminal
2. A ➞ B1 B2, where both B1 and B2 are non-terminals

> In particular, this rules out empty rules: A ➞
– removal of those simplifies things a lot

Context Free Grammars

> Definition: A grammar is in Chomsky normal form if every rule
is in one of these forms:

1. A ➞ C, where C is a terminal
2. A ➞ B1 B2, where both B1 and B2 are non-terminals

> Fact: Any context free grammar can be rewritten into an
equivalent one in Chomsky normal form
– hence, we can assume this without loss of generality
– (there can be some blowup in the size of the grammar though...)

Context Free Grammars

> Example grammar for arithmetic in Chomsky normal form
– step 1: remove terminals on right hand side

Context Free Grammars

F ➞ F * N
F ➞ N
T ➞ T + F
T ➞ F

T ➞ T + F F ➞ F * N
T ➞ F F ➞ N

> Example grammar for arithmetic in Chomsky normal form
– step 1: remove terminals on right hand side

Context Free Grammars

F ➞ F * N
F ➞ N
T ➞ T + F
T ➞ F

T ➞ T P F F ➞ F M N
T ➞ F F ➞ N

M ➞ * P ➞ +

> Example grammar for arithmetic in Chomsky normal form
– step 2: introduce new non-terminals to replace 3+ on right hand side

Context Free Grammars

T ➞ T P F F ➞ F M N
T ➞ F F ➞ N

M ➞ * P ➞ +

F ➞ F * N
F ➞ N
T ➞ T + F
T ➞ F

> Example grammar for arithmetic in Chomsky normal form
– step 2: introduce new non-terminals to replace 3+ on right hand side

Context Free Grammars

T ➞ T1 F F ➞ F1 N
T1➞ T P F1➞ F M
T ➞ F F ➞ N

M ➞ * P ➞ +

F ➞ F * N
F ➞ N
T ➞ T + F
T ➞ F

> Example grammar for arithmetic in Chomsky normal form
– step 3: eliminate 1 non-terminal on RHS by substitution

Context Free Grammars

T ➞ T1 F F ➞ F1 N
T1➞ T P F1➞ F M
T ➞ F F ➞ N

M ➞ * P ➞ +

F ➞ F * N
F ➞ N
T ➞ T + F
T ➞ F

> Example grammar for arithmetic in Chomsky normal form
– step 3: eliminate 1 non-terminal on RHS by substitution

Context Free Grammars

T ➞ T1 F F ➞ F1 N
T1➞ T P F1➞ F M
T1➞ F P F ➞ N
T ➞ F1 N
T ➞ N

M ➞ * P ➞ +

F ➞ F * N
F ➞ N
T ➞ T + F
T ➞ F

> Grammars
> CKY Algorithm
> Earley’s Algorithm
> Leo Optimization

Outline for Today

> Trying to find a tree...

> Q: What technique do we know that might be helpful?
> A: Dynamic programming!

Parsing Context Free Grammars

> Apply dynamic programming...
– to find any tree that matches the data
– (can be generalized to find the “most likely” parse also...)

> Think about what the parse tree for tokens 1 .. n might look like
– root corresponds to some rule A ➞ B1 B2 (Chomsky Normal Form)
– child B1 is root of parse tree for some 1 .. k
– child B2 is root of parse tree for k+1 .. n
– (or it could be a leaf A ➞ C, where C is a terminal, if n=1)

Parsing Context Free Grammars

> In general, parse tree for tokens i .. j might look like
– A ➞ C if i = j OR
– A ➞ B1 B2 where

> child B1 is root of parse tree for some i .. k
> child B2 is root of parse tree for k+1 .. j

> Try each of those possibilities (at most |G|) for each (i,j) pair
– each requires checking j – i + 1 possibilities for k
– need answers to sub-problem with j – i smaller

> can fill in the table along the diagonals, for example

Parsing Context Free Grammars

> Example table from arithmetic example:

Cocke-Kasami-Younger (CKY)

3 * 4 + 5 * 6
3 F/T

* M

4 F/T

+ P

5 F/T

* M

6 F/T

T ➞ T1 F
T ➞ F1 N
T1➞ T P
T1➞ F P
F ➞ F1 N
F1➞ F M
T ➞ N
F ➞ N
M ➞ *
P ➞ +

> Example table from arithmetic example:

Cocke-Kasami-Younger (CKY)

3 * 4 + 5 * 6
3 F/T F1

* M

4 F/T T1

+ P

5 F/T F1

* M

6 F/T

T ➞ T1 F
T ➞ F1 N
T1➞ T P
T1➞ F P
F ➞ F1 N
F1➞ F M
T ➞ N
F ➞ N
M ➞ *
P ➞ +

> Example table from arithmetic example:

Cocke-Kasami-Younger (CKY)

3 * 4 + 5 * 6
3 F/T F1 F/T

* M

4 F/T T1 T

+ P

5 F/T F1 F/T

* M

6 F/T

T ➞ T1 F
T ➞ F1 N
T1➞ T P
T1➞ F P
F ➞ F1 N
F1➞ F M
T ➞ N
F ➞ N
M ➞ *
P ➞ +

> Example table from arithmetic example:

Cocke-Kasami-Younger (CKY)

3 * 4 + 5 * 6
3 F/T F1 F/T T1

* M

4 F/T T1 T

+ P

5 F/T F1 F/T

* M

6 F/T

T ➞ T1 F
T ➞ F1 N
T1➞ T P
T1➞ F P
F ➞ F1 N
F1➞ F M
T ➞ N
F ➞ N
M ➞ *
P ➞ +

> Example table from arithmetic example:

Cocke-Kasami-Younger (CKY)

3 * 4 + 5 * 6
3 F/T F1 F/T T1 T

* M

4 F/T T1 T

+ P

5 F/T F1 F/T

* M

6 F/T

T ➞ T1 F
T ➞ F1 N
T1➞ T P
T1➞ F P
F ➞ F1 N
F1➞ F M
T ➞ N
F ➞ N
M ➞ *
P ➞ +

> Example table from arithmetic example:

Cocke-Kasami-Younger (CKY)

3 * 4 + 5 * 6
3 F/T F1 F/T T1 T T

* M

4 F/T T1 T

+ P

5 F/T F1 F/T

* M

6 F/T

T ➞ T1 F
T ➞ F1 N
T1➞ T P
T1➞ F P
F ➞ F1 N
F1➞ F M
T ➞ N
F ➞ N
M ➞ *
P ➞ +

> Can reconstruct the tree from the table as usual.

Cocke-Kasami-Younger (CKY)

3 * 4 + 5 * 6
3 F/T F1 F/T T1 T T

* M

4 F/T T1 T

+ P

5 F/T F1 F/T

* M

6 F/T

T ➞ T1 F
T ➞ F1 N
T1➞ T P
T1➞ F P
F ➞ F1 N
F1➞ F M
T ➞ N
F ➞ N
M ➞ *
P ➞ +

> Running time is O(|G| n3)
– in NLP, |G| >> n, so this is great
– in PL, |G| < n, so this is not great
– in algorithms, this is usually considered O(n3) since |G| is a ”constant”

> I will follow this convention for the rest of the lecture...

> Algorithm easily generalizes to find “most likely” parse tree
– frequently used in NLP case

Cocke-Kasami-Younger (CKY)

> Grammars
> CKY Algorithm
> Earley’s Algorithm
> Leo Optimization

Outline for Today

> CKY is not optimal even for general grammars...
– (can be improved using fast matrix multiplication)

> PLUS we know that certain grammars can be parsed much faster
> In particular, there exist O(n) algorithms for typical PL grammars

– O(n3) was out of the question in 1965...

> Arithmetic example is one of those
– notice how the table is mostly blank
– that’s a lot of wasted effort

Improving CKY (out of scope)

> To get to O(n), we cannot fill in an n x n table
– doing so always requires Ω(n2) time

Improving CKY

> Idea: coalesce columns...

Improving CKY

3 * 4 + 5 * 6
3 N/F/T F1 F/T T1 T T

* M

4 N/F/T

+ P

5 N/F/T F1 F/T

* M

6 N/F/T

> Idea: coalesce columns...
– let Ij include everything in the column j
– these are rules that parse i .. j for some i

> Need to remember i as well
– write entries of Ij as “A (i)”, recording both symbol and where parsing started

Improving CKY

> Now we fill in the sets I1, I2, ..., In
– parsing left to right

> If we are lucky enough to get |Ij| = O(1) for all j,
this could be a linear time algorithm
– assuming we can build Ij in O(1) time

> Latter means we cannot look at all previous Ij’s
– probably need to only look at Ij-1

Improving CKY

> Suppose Ij is the set of “A (i)” where A matches i .. j

> How do we build Ij?
> If N is the j-th symbol of input, add “A (j)” for every A ➞ N rule

> What next?
> If “C (k)” is in Ij, we might need to add “A (i)” for any A ➞ B C...

– “A (i)” should be added if “B (i)” is in Ik
– it takes O(n) time to try every k in 1 .. j-1
– so we are back to Ω(n2)

Improving CKY: False Start

> To get O(n), we need to keep track of anything we might need to
use later on in order to complete the parsing of a rule

> Specifically, if we have parsed “B (i)”, we need to keep track of the
fact that it could be used to get an A ➞ B C (i) if we later see C

> We write this fact as “A ➞ B · C (i)”, which, in Ij, means that we
have parsed the B part at i .. j
– (the “C” part can be missing here

i.e., if the rule is A ➞ B, where B is a non-terminal)

Improving CKY

> Let Ij be the set of elements like “A ➞ B · C (i)”, where:
1. B matches input tokens i .. j
2. It is possible for A to follow something that matches input tokens 1 .. i-1

> Note that “·” can be at beginning, middle, or end
– (we may as well drop the limit of only 2 symbols on the RHS)

> Second part is another optimization
– don’t waste time trying to parse rules that aren’t useful

based on what came earlier

Improved Parser

> Let Ij be the set of elements like “A ➞ B · C (i)”, where:
1. B matches input tokens i .. j
2. It is possible for A to follow something that matches input tokens 1 .. i-1

> Fill in Ij as follows:
– add anything that could follow Ij-1 and matches input token j

> (if “A ➞ B · C (i)” is in Ij-1, then C could follow)
– for each added complete item “A ➞ B C · (i)” added:

> if Ii contains “A’ ➞ B · A (i’)”, then add “A’ ➞ B A · (i’)” to Ij
> (likewise for “A’ ➞ · A (i’)”)

– add all those items that could follow the ones already added

Improved Parser

only part that is potentially slow...

> Fill in Ij as follows:
– add anything that could follow Ij-1 and matches input token j

> (if “A ➞ B · C (i)” is in Ij-1, then C could follow)
– for each added complete item “A ➞ B C · (i)” added:

> if Ii contains “A’ ➞ B · A (i’)”, then add “A’ ➞ B A · (i’)” to Ij
> (likewise for “A’ ➞ · A (i’)”)

– add all those items that could follow the ones already added

> If all |Ij|’s are size O(1), then this is O(1) time per item
– hence, O(n) over all

Improved Parser

> This version is called Earley’s algorithm

> It was developed independently of CKY by Earley
– (relation to CKY was noted by Ruzzo et al.)
– also considered a dynamic programming algorithm

> the sub-problems being solved are not quite so obvious as in CKY

Earley’s algorithm

> Can be shown that Earley’s algorithm runs in O(n2) time
for any unambiguous grammar
– meaning there is only one possible parse tree

> typical of PL grammars (though not NLP grammars)

> Can also be shown it runs in O(n) time for nice LR(k) grammars
> BUT not for all LR(k) grammars

– latter can be parsed in O(n) time by other algorithms

> The running time is at least the sum of sizes of the Ij’s...

Earley’s algorithm

> Grammars
> CKY Algorithm
> Earley’s Algorithm
> Leo Optimization

Outline for Today

> Q: Can the Ij’s be O(n) for some
unambiguous grammar’s?

Bad Cases for Earley

> Q: Can the Ij’s be O(n) for some
unambiguous grammar’s?

> A: Unfortunately, yes

A ➞ a
B ➞ b
B ➞ A B

> All B’s completed in In

Bad Cases for Earley

a a a a a a b

A A A A A A B

B

B

B

B

B

B

> Q: Can the Ij’s be O(n) for some
unambiguous grammar’s?

> A: Unfortunately, yes

> This is a “right recursive grammar”
> Fortunately, these are the only

bad cases (O(n) otherwise)

> Grammars can be usually be
rewritten to avoid it

Bad Cases for Earley

a a a a a a b

A A A A A A B

B

B

B

B

B

B

> Alternatively, we can improve the algorithm to handle those...

> Leo makes the following optimization:
– only record the top-most item in a tall stack like this
– (actually O(1) copies of it depending on how we might look for it later)

> Can then show that the Ij’s are O(1) size
– number with dot not at end is O(1) due to LR(k) property
– clever argument shows number with dot at end is also O(1)

> removing stacks leaves tree with all 2+ children and leaves those above
> (furthermore, each is discovered only once for unambiguous grammars)

Joop Leo’s Optimization

> Alternatively, we can improve the algorithm to handle those...

> Leo makes the following optimization:
– only record the top-most item in a tall stack like this
– (actually O(1) copies of it depending on how we might look for it later)

> Result is O(n) in the worst case for LR(k)
– (i.e., for anything parsable by deterministic push-down automaton
– covers almost every PL grammar

Joop Leo’s Optimization

> CKY and Earley are used in NLP
– recall that |G| is usually larger there

> In PL, we typically use special grammars (e.g., LR(k)) that can be
parsed in linear time
– LR(k) was invented by Don Knuth
– parses anything that can be parsed by a deterministic push-down automaton

> Earley + Leo gives the same asymptotic performance
– expect it to see more use given speed of computers
– (LR parsing was developed for machines 10k x slower)

Parsers in Practice

