CSE 417 Branch \& Bound (pt 4) Advanced Examples (out of scope)

Reminders

> HW9 due on Friday

- start early
- program will be slow, so debugging will be slow...
- should run in 2-4 minutes
> Please fill out course evaluations

Review of previous lectures

> Complexity theory: P \& NP

- answer can be found vs checked in polynomial time
> NP-completeness
- hardest problems in NP
$>$ Reductions
- reducing from Y to X proves $Y \leq X$
$>$ if you can solve X, then you can solve Y
$-X$ is NP-hard if every Y in $N P$ is $Y \leq X$

Review of previous lectures

Coping with NP-completeness:

1. Your problem could lie in a special case that is easy

- example: small vertex covers (or large independent sets)
- example: independent set on trees

2. Look for approximate solutions

- example: Knapsack with rounding
$>$ switch to $\mathrm{n} \times \mathrm{V}$ (from $\mathrm{n} \times \mathrm{W}$) table: store min weight, not max value
> round V's (up) even if they don't have a common multiple
- want approximate values not approximate weights

Review of previous lectures

3. Look for "fast enough" exponential time algorithms

- example: faster exponential time for 3-SAT
$>10 \mathrm{k}+$ variables and $1 \mathrm{~m}+$ clauses solvable in practice
> (versus <100 variables with brute force solution)
- example: Knapsack + Vertex Cover
> only pay exponential time in the difficulty of the vertex cover constraints
$>$ will be fast if vertex covers are small
- branch \& bound...

Review of previous lectures

3. Look for "fast enough" exponential time algorithms

- branch \& bound
> branch: recursive on pieces of the search space
> bound: return immediately if global upper bound < lower bound on piece
> global upper bound: best
> local lower bound: remove some hard constraints
- example: flow-shop scheduling
> bound: let elements run on one of the machines simultaneously
- example:TSP
> bound 1: remove $\operatorname{deg}(\mathrm{u})=2$ constraint... MST
> bound 2: remove connected constraint... 2-factor
- model min-cost 2-factor as a min cost flow problem

Today

> More advanced examples of all three

- easy cases
- approximation
- branch \& bound
> Specific examples are all (a bit) out of scope

Outline for Today

> Tree Width
> TSP Approximation
> Integer Linear Programming

Tree Width Motivation

> Recall: problems on trees are easy with dynamic programming
> For problems that are NP-complete on general graphs, we must accept exponential time for exact algorithms
> BUT we would like exponential in "distance from trees"
> Tree width will measure that...

Tree Decomposition

> Definition: A tree decomposition of a connected graph G is a tree T whose nodes S_{1}, \ldots, S_{M} are subsets of nodes of G such that

- for every edge (u, v) of G, we have $\{u, v\} \subseteq S_{i}$ for some i
- for every node u of G, the nodes S_{i} with u in S_{i} form a sub-tree of T

Tree Decomposition

> Definition: A tree decomposition of a connected graph G is a tree T whose nodes S_{1}, \ldots, S_{M} are subsets of nodes of G such that

- for every edge (u, v) of G, we have $\{u, v\} \subseteq S_{i}$ for some i
- for every node u of G, the nodes S_{i} with $\{u\} \subseteq S_{i}$ form a sub-tree of T
> Example: for every G , there is a tree decomposition with a single tree node $\mathrm{S}_{1}=\mathrm{N}$
- every edge is a subset of S_{1}
- for every u in G, the only node containing u is S_{1}, which is the entire tree

Tree Decomposition

$>$ Example: if G is a tree, it has a tree decomposition where no S_{i} contains more than 2 elements

u appears in $\{u\}$ and
$\{u, v\}$ for each (u, v) of G
they are a subtree of T
(a "star" graph)

Tree Decomposition

> Fact: if G is a cycle, any tree decomposition has some S_{i} with at least 3 elements

Tree Decomposition

$>$ Fact: if G is a cycle, any tree decomposition has some S_{i} with at least 3 elements

Tree Width

$>$ Definition: Let T be a tree decomposition of G with nodes S_{1}, \ldots, S_{M}. The width of T is $\max \left|S_{i}\right|-1$.
> Definition: The tree width of G is the minimum width of any tree decomposition of G.
> Proposition: The tree width of G is 1 iff G is a tree.

Separators

> Recall: removing any non-leaf node from a tree disconnects the graph...

> Proposition: Let T be a tree decomposition of G with nodes S_{1}, $\ldots, \mathrm{S}_{\mathrm{M}}$. For any non-leaf S_{i} in T , removing every u in S_{i} from G disconnects the graph.

- let S_{j} and S_{k} be two other nodes of T
- if u in S_{j} and u in S_{k}, then we must have u in S_{i}
$>$ tree nodes containing u form a (connected) sub-tree
$>$ only path from S_{j} to S_{k} in T goes through S_{i}

Separators

> Recall: removing any non-leaf node from a tree disconnects the graph...

> Proposition: Let T be a tree decomposition of G with nodes S_{1}, $\ldots . \mathrm{S}_{\mathrm{M}}$. For any non-leaf S_{i} in T , removing every u in S_{i} from G disconnects the graph.

- let S_{j} and S_{k} be two other nodes of T
- if u in S_{j} and u in S_{k}, then we must have u in S_{i}
- so each disconnected piece of T contains disjoint nodes of $\mathrm{N}-\mathrm{S}_{\mathrm{i}}$
$>$ (removing S_{i} from T disconnects T since it is a tree)
$>$ only nodes in common are those of S_{i} that we removed

Separators

> Recall: removing any non-leaf node from a tree disconnects the graph...

> Proposition: Let T be a tree decomposition of G with nodes S_{1}, ..., S_{M}. For any non-leaf S_{i} in T , removing every u in S_{i} from G disconnects the graph.

- let S_{j} and S_{k} be two other nodes of T
- each disconnected piece of T contains disjoint nodes from N - S_{i}
- every edge (u,v) of G appears as $\{u, v\} \subseteq S_{t}$ for some t
- so any such edge with $\{u, v\} \subseteq N-S_{i}$ is between appearing in the same disconnected piece of T

Separators

> Recall: removing any non-leaf node from a tree disconnects the graph...

> Proposition: Let T be a tree decomposition of G with nodes S_{1}, ..., S_{M}. For any non-leaf S_{i} in T , removing every u in S_{i} from G disconnects the graph.

- let S_{j} and S_{k} be two other nodes of T
- each disconnected piece of T contains disjoint nodes from $N-S_{i}$
- any edge (u, v) of G with $\{u, v\} \subseteq N-S_{i}$ is between appearing in the same disconnected piece of T
- so subgraphs on nodes of each piece of T are disconnected

Separators

> Intuition: problems are easy on trees because the children of a node are independent given what is
 happening in the parent

- DP only needs to consider the cases of what the parent might have
> For general graphs, we get the same property, but we may need to consider what is happening in multiple nodes
- that number is the tree width

Recall: Independent Set on a Tree

> Independent Set: Given graph G and number k, find a subset of k nodes such that no two are connected by an edge

W

Independent Set on a Tree

> Apply dynamic programming...

- optimal solution on tree rooted at $\mathrm{t}=$ larger of
 optimal solution with t excluded
(optimal solution to which t can be legally added) +1
- optimal solution with t excluded =
(opt solution on x) $+($ opt solution on y$)+($ opt solution on z$)$
$>$ no problem from edges $(t, x),(t, y),(t, z)$ since t is not included
- optimal solution with t included $=$
(opt solution on x with x excluded) +
(opt solution on y with y excluded) +
(opt solution on z with z excluded)
> no problem from edges ($(, x)$, (t, y), ($(, z)$ since x, y, z not included

Independent Set and Tree Width

> Only consider two possibilities for each subtree: whether or not the root node is included in the solution
> Given node S_{i} from a tree decomposition, we will consider every option for which subset of those are included

- 2^{k} total, where $\mathrm{k}=\left|\mathrm{S}_{\mathrm{i}}\right|$
- k is bounded by the $1+$ tree width of the graph
- this is $\mathrm{O}(1)$ if tree width is $\mathrm{O}(1)$

Independent Set and Tree Width

> Apply dynamic programming...

- optimal solution on subtree rooted at $\mathrm{S}_{\mathrm{i}}=$ largest of optimal solution at S_{i} with X included and $\left(\mathrm{S}_{\mathrm{i}}-\mathrm{X}\right)$ excluded (over each subset X of S_{i} that are independent in G)
- optimal solution at S_{i} with X included and Y excluded $=|X|+$
sum over the children S_{j} of S_{i} of
optimal solution on subtree rooted at S_{j}
with X^{\prime} included and Y^{\prime} excluded
where X^{\prime} and Y^{\prime} are consistent with X and Y, respectively
> all choices for subtree rooted at S_{j} can be made independently except for choices on nodes also appearing in S_{i}
- recall: removing S_{i} disconnects the graph into independent pieces
$>$ (consistent meaning, e.g., $\mathrm{X} \cap \mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\mathrm{X}^{\prime} \cap \mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}$)

Independent Set and Tree Width

$>$ Running time in terms of tree width, k

- table size is $\mathrm{M} 2^{\mathrm{k}}$
- time per node is \#children $\cdot \mathrm{k} 2^{\mathrm{k}}$
- total time is $\mathrm{O}\left(\mathrm{kM}\left(2^{\mathrm{k}}\right)^{2}\right)$
$>$ this can be easily optimized down to $\mathrm{O}\left(\mathrm{k} \mathrm{M} 2^{\mathrm{k}}\right)$
> This is linear time for fixed k

W

Outline for Today

> Tree Width
> TSP Approximation

> Integer Linear Programming

Traveling Salesperson Problem

> Traveling Salesperson Problem (TSP): Given weighted graph G and number v, find a Hamiltonian cycle of minimum length

- cycle is Hamiltonian if it goes through each node exactly once

from http://mathworld.wolfram.com/TravelingSalesmanProblem.htm|

TSP Special Cases

> (symmetric) TSP
> Metric TSP: distances form a metric space

- satisfy the triangle inequality: $d(a, c) \leq d(a, b)+d(b, c)$
- (direct path $a \rightarrow c$ cannot be longer than indirect path $a \rightarrow b \rightarrow c$)
> Euclidian TSP: Euclidian distance between points
- special case of Metric TSP

TSP Approximations

> Definition: c-approximation algorithm returns a solution that is guaranteed to be within a factor c of optimal
> TSP cannot be efficiently approximated at all

- no efficient $f(n)$-approximation algorithm for any computable function f
> Sanjeev Arora (more later) helped prove the PCP theorem
$>$ It implies that some NP-complete problems cannot be efficiently approximated to any constant factor

Metric TSP 2-Approximation

> This is not true of Metric TSP
> Simple 2-approximation

- compute an MST in the graph

> cost is a lower bound on the shortest Hamiltonian cycle (since a Hamiltonian cycle is also a ST + an extra edge)

Metric TSP 2-Approximation

> This is not true of Metric TSP
> Simple 2-approximation

- compute an MST in the graph

> cost is a lower bound on the shortest Hamiltonian cycle (since a Hamiltonian cycle is also a ST + an extra edge)
- tour around the tree uses every edge twice
> cost is twice MST cost, so at most twice optimal value
- short-cutting to avoid re-visiting nodes cannot increase cost

Metric TSP 2-Approximation

> This is not true of Metric TSP
> Simple 2-approximation

- compute an MST in the graph

> cost is a lower bound on the shortest Hamiltonian cycle (since a Hamiltonian cycle is also a ST + an extra edge)
- tour around the tree uses every edge twice
> cost is twice MST cost, so at most twice optimal value
- short-cutting to avoid re-visiting nodes cannot increase cost
> triangle inequality: direct path cannot be longer

Metric TSP 3/2-Approximation

> Improved algorithm due to Christofides
> Idea: try to find the optimal way to turn this MST into a tour

- in principle, that could be efficiently computable
$>$ no reason to think the optimal solution can be found that way
> i.e., we haven't proved $P=N P$
- actual algorithm will not quite do that

Metric TSP 3/2-Approximation

$>$ Difficulty with the tree is odd-degree nodes

- e.g., leaf nodes
- they require us to return to the parent again
> Fact: if every node has even degree, then there is a cycle that uses every edge exactly once

- called an "Euler tour"
- can build a path that never reuses an edge... must return to start
$>$ becomes odd degree after using incoming edge, so $1+$ edges left
- avoid leaving out any nodes by never using an edge whose removal would disconnect the graph

Metric TSP 3/2-Approximation

> Difficulty with the tree is odd-degree nodes

- e.g., leaf nodes
- they require us to return to the parent again
> Idea: find a matching of the odd-degree nodes
- adding these to the graph makes every edge even degree

- hence, there is an Euler tour
- if any nodes are visited more than once, short-cutting out the re-visits can only decrease the cost

Metric TSP 3/2-Approximation

> Theorem: min cost matching of odd-degree nodes has cost at most $1 / 2$ of min cost tour - consider the min cost tour...

Metric TSP 3/2-Approximation

> Theorem: min cost matching of odd-degree nodes has cost at most $1 / 2$ of min cost tour

- consider the min cost tour
- some of these are our odd degree nodes

Metric TSP 3/2-Approximation

> Theorem: min cost matching of odd-degree nodes has cost at most $1 / 2$ of min cost tour

- consider the min cost tour
- some of these are our odd degree nodes
- short-cutting out the others can only decrease cost

Metric TSP 3/2-Approximation

> Theorem: min cost matching of odd-degree nodes has cost at most $1 / 2$ of min cost tour

- consider the min cost tour
- some of these are our odd degree nodes
- short-cutting out the others can only decrease cost
- splitting every other edge into two sets gives two matchings

Metric TSP 3/2-Approximation

> Theorem: min cost matching of odd-degree nodes has cost at most $1 / 2$ of min cost tour

- consider the min cost tour
- some of these are our odd degree nodes
- short-cutting out the others can only decrease cost
- splitting every other edge into two sets gives two matchings
- total length $=$ (length of dark browns) + (length of light browns)

Metric TSP 3/2-Approximation

> Theorem: min cost matching of odd-degree nodes has cost at most $1 / 2$ of min cost tour

- consider the min cost tour
- some of these are our odd degree nodes
- short-cutting out the others can only decrease cost
- splitting every other edge into two sets gives two matchings

- total length $=$ (length of dark browns) + (length of light browns)
- min(length of dark browns, length of light browns)
$\leq(1 / 2)$ total length
$\leq(1 / 2)$ length of min cost Hamiltonian cycle
> due to shortcutting out the even degree nodes

Metric TSP 3/2-Approximation

> Theorem: min cost matching of odd-degree nodes has cost at most $1 / 2$ of min cost tour
> Algorithm returns shortcutting of (MST + matching of odd degrees)

- total cost is at most that of MST + min cost matching of odd degree nodes
- cost of MST \leq min cost tour
- min cost matching of odd degrees $\leq(1 / 2)$ min cost tour
- cost of result $\leq(3 / 2)$ min cost tour
> (In practice, results are typically off by 10-15\%)

Metric TSP 3/2-Approximation

> How do we actually compute a min-cost matching of the odd degree nodes?
> Q: Is this a network flow problem?
> A: No

- that is only true of bipartite graphs
> Nonetheless, efficient algorithms exist
- can be solved in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time

Euclidian TSP

> TSP cannot be approximated at all
> Metric TSP has 3/2-approximation
$>$ BUT there is no $(1+\varepsilon)$-approximation for some $\varepsilon>0$

- best bound is $\varepsilon>0.008$
$>$ Arora: Euclidian TSP has $(1+\varepsilon)$-approximation for any $\varepsilon>0$
- depends exponentially on $1 / \varepsilon$ (PTAS not FPTAS)

Euclidian TSP

$>$ Arora: Euclidian TSP has $(1+\varepsilon)$-approximation for any $\varepsilon>0$

- depends exponentially on $1 / \varepsilon$ (PTAS not FPTAS)
> Construction:
- moves cities to points on a grid
- considers only paths going through mid-points of gridlines
> Algorithm is complicated dynamic program
> Correctness proof is also complicated
- must use facts about Euclidian distance beyond triangle-inequality

Outline for Today

> Tree Width
> TSP Approximation
> Integer Linear Programming

Linear Programs

> A linear programming problem asks you to minimize a linear function subject to linear equality and inequality constraints
> Example (from "Network Flows"):

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}+2 x_{2}-x_{3}+x_{4}+3 x_{5} \\
\text { subj. to } & x_{2}+x_{4}+x_{5} \geq 5 \\
& x_{1}+x_{2}+x_{5} \geq 12 \\
& x_{1}+x_{2}+x_{3} \geq 10 \\
& x_{1}+x_{2}+x_{3} \geq 6 \\
\text { and } & x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

Integer Linear Programs

> An integer linear programming problem asks you to find the best solution to a linear program where all $x_{i}^{\prime} s$ are integers
> Problem is NP-complete even if each is x_{i} is restricted to $\{0,1\}$

- potentially still 2^{n} solutions to consider

0/1 Integer Linear Programs

> Branch:

- nodes set $\{0,1\}$ values for a subset of the x_{i} 's
$>$ e.g, $\left[x_{1}=0, x_{5}=1, x_{2}=1\right]$
- branching factor will be 2
$>$ previous $+\left[\mathrm{x}_{\mathrm{i}}=0\right]$ and previous $+\left[\mathrm{x}_{\mathrm{i}}=1\right]$
> Q: How do we get a lower bound on a 0/1 Integer LP?
> A: Drop the integrality constraints
- rest is a normal LP that can be solved in polynomial time
- if answer is not integral, branch on a fractional x_{i}

0/1 Integer Linear Programs

> Child nodes add additional $x_{i}=b_{i}$ constraints to the LP
> This approach works very well in practice

- (note: need to use an LP solver that returns integer solutions when optimal)
> State-of-the-art solvers add some other techniques as well
- but B\&B is at the core

