CSE 417 Branch & Bound (pt 4) Advanced Examples (out of scope)

UNIVERSITY of WASHINGTON

Reminders

> HW9 due on Friday

- start early
- program will be slow, so debugging will be slow...
- should run in 2-4 minutes

> Please fill out course evaluations

- > Complexity theory: P & NP
 - answer can be found vs checked in polynomial time
- > NP-completeness
 - hardest problems in NP
- > Reductions
 - reducing from Y to X proves $Y \le X$
 - > if you can solve X, then you can solve Y
 - X is NP-hard if every Y in NP is Y \leq X

Coping with NP-completeness:

- 1. Your problem could lie in a special case that is easy
 - example: small vertex covers (or large independent sets)
 - example: independent set on trees
- 2. Look for approximate solutions
 - example: Knapsack with rounding
 - > switch to n x V (from n x W) table: store min weight, not max value
 - > round V's (up) even if they don't have a common multiple
 - want approximate values **not** approximate weights

- 3. Look for "fast enough" exponential time algorithms
 - example: faster exponential time for 3-SAT
 - > 10k+ variables and 1m+ clauses solvable in practice
 - > (versus <100 variables with brute force solution)
 - example: Knapsack + Vertex Cover
 - > only pay exponential time in the difficulty of the vertex cover constraints
 - > will be fast if vertex covers are small
 - branch & bound...

- 3. Look for "fast enough" exponential time algorithms
 - branch & bound
 - > branch: recursive on pieces of the search space
 - > bound: return immediately if global upper bound < lower bound on piece
 - > global upper bound: best
 - > local lower bound: remove some hard constraints
 - example: flow-shop scheduling
 - > bound: let elements run on one of the machines simultaneously
 - example: TSP
 - > bound 1: remove deg(u) = 2 constraint... MST
 - > bound 2: remove connected constraint... 2-factor
 - model min-cost 2-factor as a min cost flow problem

- > More advanced examples of all three
 - easy cases
 - approximation
 - branch & bound
- > Specific examples are all (a bit) out of scope

Outline for Today

> Tree Width > TSP Approximation

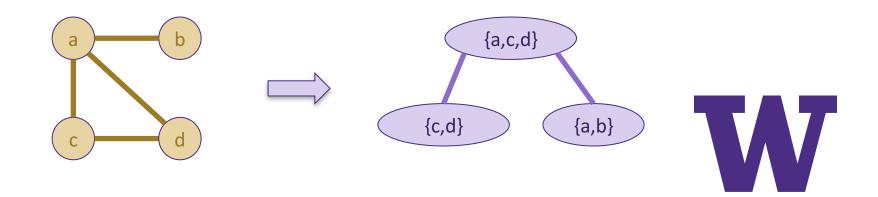
> Integer Linear Programming

W

Tree Width Motivation

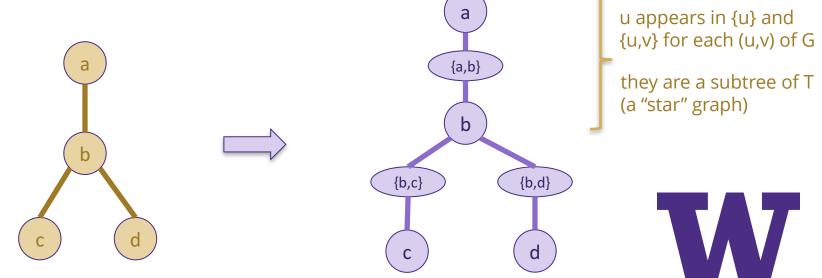
- > Recall: problems on trees are easy with dynamic programming
- > For problems that are NP-complete on general graphs, we must accept exponential time for exact algorithms
- > BUT we would like exponential in "distance from trees"
- > Tree width will measure that...

- > Definition: A tree decomposition of a connected graph G is a tree T whose nodes S₁, ..., S_M are subsets of nodes of G such that
 - for every edge (u,v) of G, we have $\{u, v\} \subseteq S_i$ for some i
 - for every node u of G, the nodes S_i with u in S_i form a sub-tree of T

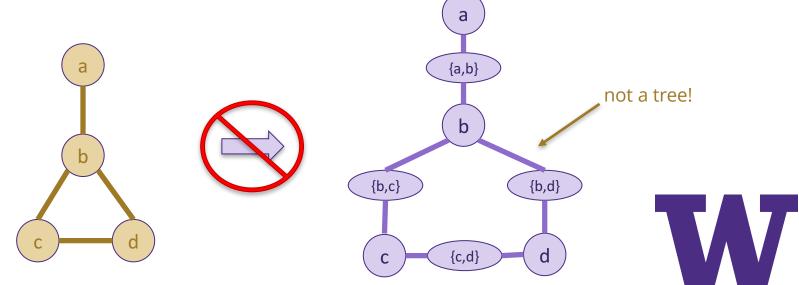


- > Definition: A tree decomposition of a connected graph G is a tree T whose nodes S₁, ..., S_M are subsets of nodes of G such that
 - for every edge (u,v) of G, we have $\{u, v\} \subseteq S_i$ for some i
 - for every node u of G, the nodes S_i with $\{u\} \subseteq S_i$ form a sub-tree of T
- > Example: for every G, there is a tree decomposition with a single tree node S₁ = N
 - every edge is a subset of S_1
 - for every u in G, the only node containing u is S_1 , which is the entire tree

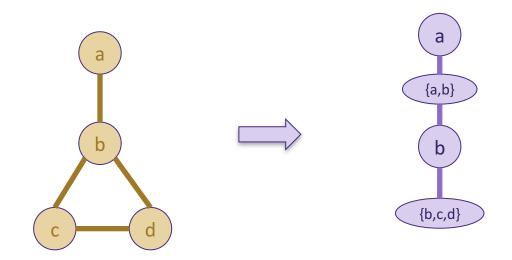
Example: if G is a tree, it has a tree decomposition where no S_i contains more than 2 elements



Fact: if G is a cycle, any tree decomposition has some S_i with at least 3 elements



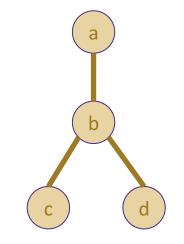
Fact: if G is a cycle, any tree decomposition has some S_i with at least 3 elements



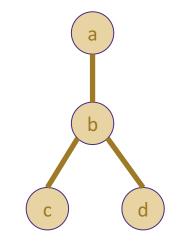
Tree Width

- > **Definition**: Let T be a tree decomposition of G with nodes $S_1, ..., S_M$. The width of T is max $|S_i| 1$.
- > **Definition**: The tree width of G is the minimum width of any tree decomposition of G.
- > **Proposition**: The tree width of G is 1 iff G is a tree.

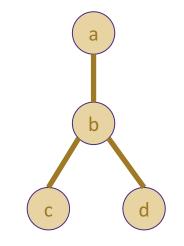
W



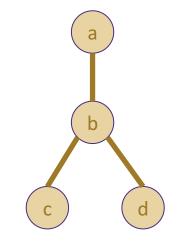
- > Proposition: Let T be a tree decomposition of G with nodes S₁, ..., S_M. For any non-leaf S_i in T, removing every u in S_i from G disconnects the graph.
 - let S_j and S_k be two other nodes of T
 - if u in S_i and u in S_k , then we must have u in S_i
 - > tree nodes containing u form a (connected) sub-tree
 - > only path from S_j to S_k in T goes through S_i



- > Proposition: Let T be a tree decomposition of G with nodes S₁, ..., S_M. For any non-leaf S_i in T, removing every u in S_i from G disconnects the graph.
 - let S_j and S_k be two other nodes of T
 - if u in S_i and u in S_k , then we must have u in S_i
 - so each disconnected piece of T contains disjoint nodes of N S_i
 - > (removing S_i from T disconnects T since it is a tree)
 - > only nodes in common are those of S_i that we removed



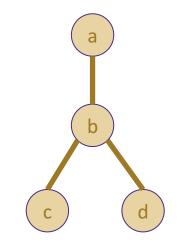
- > Proposition: Let T be a tree decomposition of G with nodes S₁, ..., S_M. For any non-leaf S_i in T, removing every u in S_i from G disconnects the graph.
 - let S_i and S_k be two other nodes of T
 - each disconnected piece of T contains disjoint nodes from N S_i
 - every edge (u,v) of G appears as $\{u,v\} \subseteq S_t$ for some t
 - so any such edge with {u,v} \subseteq N S_i is between appearing in the same disconnected piece of T



- > Proposition: Let T be a tree decomposition of G with nodes S₁, ..., S_M. For any non-leaf S_i in T, removing every u in S_i from G disconnects the graph.
 - let S_i and S_k be two other nodes of T
 - each disconnected piece of T contains disjoint nodes from N S_i
 - any edge (u,v) of G with {u,v} ⊆ N S_i is between appearing in the same disconnected piece of T
 - so subgraphs on nodes of each piece of T are disconnected

Separators

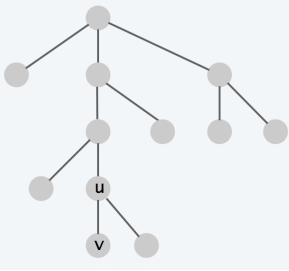
> Intuition: problems are easy on trees because the children of a node are independent given what is happening in the parent



- DP only needs to consider the cases of what the parent might have
- > For general graphs, we get the same property, but we may need to consider what is happening in multiple nodes
 - that number is the tree width

Recall: Independent Set on a Tree

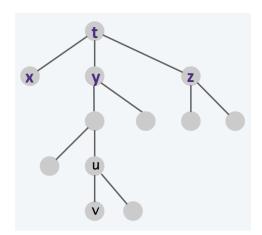
> Independent Set: Given graph G and number k, find a subset of k nodes such that no two are connected by an edge



Independent Set on a Tree

> Apply dynamic programming...

- optimal solution on tree rooted at t = larger of optimal solution with t excluded
 - (optimal solution to which t can be legally added) + 1
- optimal solution with t excluded =
 - (opt solution on x) + (opt solution on y) + (opt solution on z)
 - > no problem from edges (t,x), (t,y), (t,z) since t is not included
- optimal solution with t included =
 - (opt solution on x with x excluded) +
 - (opt solution on y with y excluded) +
 - (opt solution on z with z excluded)
 - > no problem from edges (t,x), (t,y), (t,z) since x, y, z not included



Independent Set and Tree Width

- > Only consider two possibilities for each subtree: whether or not the root node is included in the solution
- > Given node S_i from a tree decomposition, we will consider every option for which subset of those are included
 - 2^k total, where $k = |S_i|$
 - k is bounded by the 1 + tree width of the graph
 - this is O(1) if tree width is O(1)

Independent Set and Tree Width

> Apply dynamic programming...

- optimal solution on subtree rooted at S_i = largest of optimal solution at S_i with X included and (S_i – X) excluded (over each subset X of S_i that are independent in G)
- optimal solution at S_i with X included and Y excluded = |X| + sum over the children S_j of S_i of
 - optimal solution on subtree rooted at S_i
 - with X' included and Y' excluded
 - where X' and Y' are consistent with X and Y, respectively
 - $\,>\,$ all choices for subtree rooted at S_j can be made independently except for choices on nodes also appearing in S_i
 - recall: removing S_{i} disconnects the graph into independent pieces
 - > (consistent meaning, e.g., X \cap S_i \cap S_j = X' \cap S_i \cap S_j)

Independent Set and Tree Width

- > Running time in terms of tree width, k
 - table size is M 2^k
 - time per node is #children \cdot k 2^k
 - total time is $O(k M (2^k)^2)$
 - > this can be easily optimized down to O(k M 2^k)
- > This is <u>linear time</u> for fixed k

Outline for Today

- > Tree Width
- > TSP Approximation (
- > Integer Linear Programming

Traveling Salesperson Problem

- > **Traveling Salesperson Problem (TSP)**: Given weighted graph G and number v, find a Hamiltonian cycle of minimum length
 - cycle is Hamiltonian if it goes through each node exactly once



from http://mathworld.wolfram.com/TravelingSalesmanProblem.html

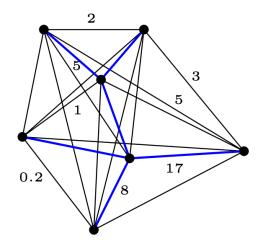
TSP Special Cases

- > (symmetric) TSP
- > Metric TSP: distances form a metric space
 - satisfy the triangle inequality: $d(a,c) \le d(a,b) + d(b,c)$
 - (direct path $a \rightarrow c$ cannot be longer than indirect path $a \rightarrow b \rightarrow c$)
- > Euclidian TSP: Euclidian distance between points
 - special case of Metric TSP

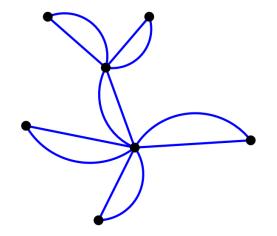
TSP Approximations

- > **Definition**: c-approximation algorithm returns a solution that is guaranteed to be within a factor c of optimal
- > TSP cannot be efficiently approximated at all
 - no efficient f(n)-approximation algorithm for any computable function f
- > Sanjeev Arora (more later) helped prove the PCP theorem
- > It implies that some NP-complete problems cannot be efficiently approximated to any constant factor

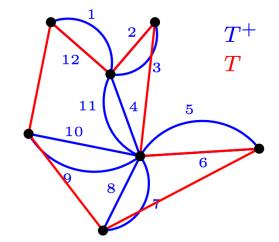
- > This is not true of Metric TSP
- > Simple 2-approximation
 - compute an MST in the graph
 - > cost is a lower bound on the shortest Hamiltonian cycle (since a Hamiltonian cycle is also a ST + an extra edge)



- > This is not true of Metric TSP
- > Simple 2-approximation
 - compute an MST in the graph
 - > cost is a lower bound on the shortest Hamiltonian cycle (since a Hamiltonian cycle is also a ST + an extra edge)
 - tour around the tree uses every edge twice
 - > cost is twice MST cost, so at most twice optimal value
 - short-cutting to avoid re-visiting nodes cannot increase cost

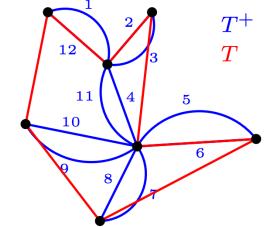


- > This is not true of Metric TSP
- > Simple 2-approximation
 - compute an MST in the graph
 - > cost is a lower bound on the shortest Hamiltonian cycle (since a Hamiltonian cycle is also a ST + an extra edge)
 - tour around the tree uses every edge twice
 - > cost is twice MST cost, so at most twice optimal value
 - short-cutting to avoid re-visiting nodes cannot increase cost
 - > triangle inequality: direct path cannot be longer

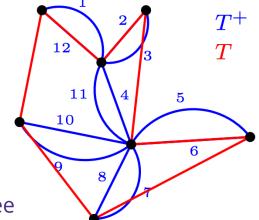


- > Improved algorithm due to Christofides
- > Idea: try to find the optimal way to turn this MST into a tour
 - in principle, that could be efficiently computable
 - > no reason to think the optimal solution can be found that way
 - > i.e., we haven't proved P = NP
 - actual algorithm will not quite do that

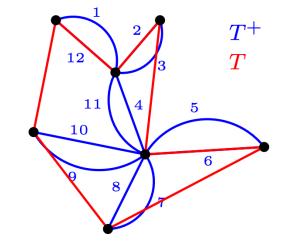
- > Difficulty with the tree is odd-degree nodes
 - e.g., leaf nodes
 - they require us to return to the parent again
- Fact: if every node has even degree, then there is a cycle that uses every edge exactly once
 - called an "Euler tour"
 - can build a path that never reuses an edge... must return to start
 - > becomes odd degree after using incoming edge, so 1+ edges left
 - avoid leaving out any nodes by never using an edge whose removal would disconnect the graph

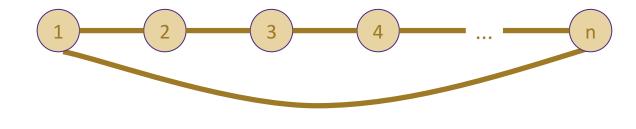


- > Difficulty with the tree is odd-degree nodes
 - e.g., leaf nodes
 - they require us to return to the parent again
- > **Idea**: find a matching of the odd-degree nodes
 - adding these to the graph makes every edge even degree
 - hence, there is an Euler tour
 - if any nodes are visited more than once, short-cutting out the re-visits can only decrease the cost

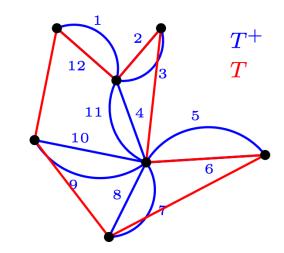


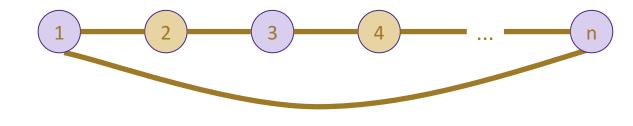
- > Theorem: min cost matching of odd-degree nodes has cost at most 1/2 of min cost tour
 - consider the min cost tour...



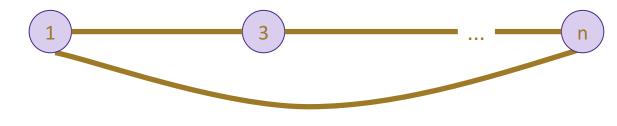


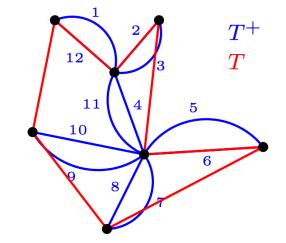
- > Theorem: min cost matching of odd-degree nodes has cost at most 1/2 of min cost tour
 - consider the min cost tour
 - some of these are our odd degree nodes



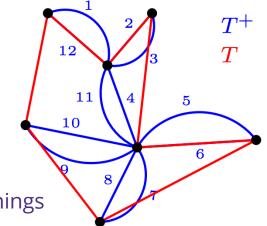


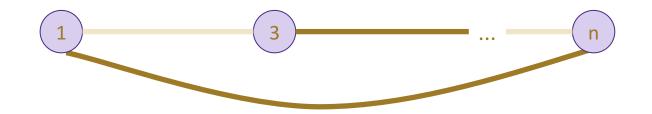
- > Theorem: min cost matching of odd-degree nodes has cost at most 1/2 of min cost tour
 - consider the min cost tour
 - some of these are our odd degree nodes
 - short-cutting out the others can only decrease cost



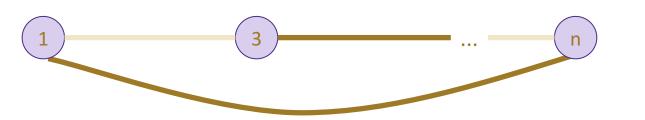


- > Theorem: min cost matching of odd-degree nodes has cost at most 1/2 of min cost tour
 - consider the min cost tour
 - some of these are our odd degree nodes
 - short-cutting out the others can only decrease cost
 - splitting every other edge into two sets gives two matchings





- > Theorem: min cost matching of odd-degree nodes has cost at most 1/2 of min cost tour
 - consider the min cost tour
 - some of these are our odd degree nodes
 - short-cutting out the others can only decrease cost
 - splitting every other edge into two sets gives two matchings
 - total length = (length of dark browns) + (length of light browns)



12

11

10

 T^+

T

5

6

- > Theorem: min cost matching of odd-degree nodes has cost at most 1/2 of min cost tour
 - consider the min cost tour
 - some of these are our odd degree nodes
 - short-cutting out the others can only decrease cost
 - splitting every other edge into two sets gives two matchings
 - total length = (length of dark browns) + (length of light browns)

 T^+

T

5

6

12

11

10

- min(length of dark browns, length of light browns)
 ≤ (1/2) total length
 - \leq (1/2) length of min cost Hamiltonian cycle
 - > due to shortcutting out the even degree nodes

- > Theorem: min cost matching of odd-degree nodes has cost at most 1/2 of min cost tour
- > Algorithm returns shortcutting of (MST + matching of odd degrees)
 - total cost is at most that of MST + min cost matching of odd degree nodes
 - cost of MST \leq min cost tour
 - − min cost matching of odd degrees \leq (1/2) min cost tour
 - cost of result \leq (3/2) min cost tour
- > (In practice, results are typically off by 10-15%)

- > How do we actually compute a min-cost matching of the odd degree nodes?
- > **Q**: Is this a network flow problem?
- > **A**: No
 - that is only true of bipartite graphs
- > Nonetheless, efficient algorithms exist
 - can be solved in O(n³) time

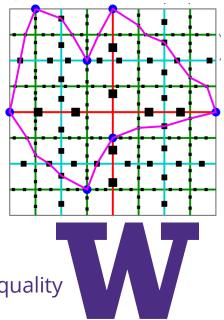
Euclidian TSP

> TSP cannot be approximated at all

- > Metric TSP has 3/2-approximation
- > BUT there is no (1 + ϵ)-approximation for some ϵ > 0
 - best bound is $\epsilon > 0.008$
- > Arora: Euclidian TSP has (1 + ϵ)-approximation for any ϵ > 0
 - depends exponentially on 1/ε (PTAS not FPTAS)

Euclidian TSP

- > Arora: Euclidian TSP has (1 + ϵ)-approximation for any ϵ > 0
 - depends exponentially on 1/ε (PTAS not FPTAS)
- > Construction:
 - moves cities to points on a grid
 - considers only paths going through mid-points of gridlines
- > Algorithm is complicated **dynamic program**
- > Correctness proof is also complicated
 - must use facts about Euclidian distance beyond triangle-inequality



Outline for Today

- > Tree Width
- > **TSP Approximation**
- > Integer Linear Programming 🤇 🧫

Linear Programs

- > A linear programming problem asks you to minimize a linear function subject to linear equality and inequality constraints
- > Example (from "Network Flows"):

$$\begin{array}{ll} \mbox{minimize} & x_1 + 2 \, x_2 - x_3 + x_4 + 3 \, x_5 \\ \mbox{subj. to} & x_2 + x_4 + x_5 \geq 5 \\ & x_1 + x_2 + x_5 \geq 12 \\ & x_1 + x_2 + x_3 \geq 10 \\ & x_1 + x_2 + x_3 \geq 6 \\ \mbox{and} & x_1, x_2, x_3, x_4, x_5 \geq 0 \end{array}$$

Integer Linear Programs

> An integer linear programming problem asks you to find the best solution to a linear program where all x_i's are integers

W

- > Problem is NP-complete even if each is x_i is restricted to {0,1}
 - potentially still 2ⁿ solutions to consider

O/1 Integer Linear Programs

- > Branch:
 - nodes set {0,1} values for a subset of the x_i 's
 - > e.g, [x₁=0, x₅=1, x₂=1]
 - branching factor will be 2
 - > previous + $[x_i=0]$ and previous + $[x_i=1]$
- > **Q**: How do we get a lower bound on a 0/1 Integer LP?
- > **A**: Drop the integrality constraints
 - rest is a normal LP that can be solved in polynomial time
 - if answer is not integral, branch on a fractional x_i

O/1 Integer Linear Programs

- > Child nodes add additional x_i = b_i constraints to the LP
- > This approach works very well in practice
 - (note: need to use an LP solver that returns integer solutions when optimal)
- > State-of-the-art solvers add some other techniques as well
 - but B&B is at the core