
CSE 417
Branch & Bound (pt 4)
Advanced Examples (out of scope)

> HW9 due on Friday
– start early
– program will be slow, so debugging will be slow...
– should run in 2-4 minutes

> Please fill out course evaluations

Reminders

> Complexity theory: P & NP
– answer can be found vs checked in polynomial time

> NP-completeness
– hardest problems in NP

> Reductions
– reducing from Y to X proves Y ≤ X

> if you can solve X, then you can solve Y
– X is NP-hard if every Y in NP is Y ≤ X

Review of previous lectures

Coping with NP-completeness:

1. Your problem could lie in a special case that is easy
– example: small vertex covers (or large independent sets)
– example: independent set on trees

2. Look for approximate solutions
– example: Knapsack with rounding

> switch to n x V (from n x W) table: store min weight, not max value
> round V’s (up) even if they don’t have a common multiple

– want approximate values not approximate weights

Review of previous lectures

3. Look for “fast enough” exponential time algorithms
– example: faster exponential time for 3-SAT

> 10k+ variables and 1m+ clauses solvable in practice
> (versus <100 variables with brute force solution)

– example: Knapsack + Vertex Cover
> only pay exponential time in the difficulty of the vertex cover constraints
> will be fast if vertex covers are small

– branch & bound...

Review of previous lectures

3. Look for “fast enough” exponential time algorithms
– branch & bound

> branch: recursive on pieces of the search space
> bound: return immediately if global upper bound < lower bound on piece
> global upper bound: best
> local lower bound: remove some hard constraints

– example: flow-shop scheduling
> bound: let elements run on one of the machines simultaneously

– example: TSP
> bound 1: remove deg(u) = 2 constraint... MST
> bound 2: remove connected constraint... 2-factor

– model min-cost 2-factor as a min cost flow problem

Review of previous lectures

> More advanced examples of all three
– easy cases
– approximation
– branch & bound

> Specific examples are all (a bit) out of scope

Today

> Tree Width
> TSP Approximation
> Integer Linear Programming

Outline for Today

> Recall: problems on trees are easy with dynamic programming

> For problems that are NP-complete on general graphs, we must
accept exponential time for exact algorithms

> BUT we would like exponential in “distance from trees”

> Tree width will measure that...

Tree Width Motivation

> Definition: A tree decomposition of a connected graph G is a
tree T whose nodes S1, ..., SM are subsets of nodes of G such that
– for every edge (u,v) of G, we have {u, v} ⊆ Si for some i
– for every node u of G, the nodes Si with u in Si form a sub-tree of T

Tree Decomposition

a b

c d

{a,c,d}

{a,b}{c,d}

> Definition: A tree decomposition of a connected graph G is a
tree T whose nodes S1, ..., SM are subsets of nodes of G such that
– for every edge (u,v) of G, we have {u, v} ⊆ Si for some i
– for every node u of G, the nodes Si with {u} ⊆ Si form a sub-tree of T

> Example: for every G, there is a tree decomposition with a single
tree node S1 = N
– every edge is a subset of S1

– for every u in G, the only node containing u is S1,
which is the entire tree

Tree Decomposition

> Example: if G is a tree, it has a tree decomposition where no Si
contains more than 2 elements

Tree Decomposition

b

a

c d

b

a

c d

{a,b}

{b,c} {b,d}

u appears in {u} and
{u,v} for each (u,v) of G

they are a subtree of T
(a “star” graph)

> Fact: if G is a cycle, any tree decomposition has some Si with at
least 3 elements

Tree Decomposition

b

a

c d

b

a

c d

{a,b}

{b,c} {b,d}

{c,d}

not a tree!

> Fact: if G is a cycle, any tree decomposition has some Si with at
least 3 elements

Tree Decomposition

b

a

c d

b

a

{a,b}

{b,c,d}

> Definition: Let T be a tree decomposition of G with nodes S1, ...,
SM. The width of T is max |Si| – 1.

> Definition: The tree width of G is the minimum width of any tree
decomposition of G.

> Proposition: The tree width of G is 1 iff G is a tree.

Tree Width

> Recall: removing any non-leaf node from a tree
disconnects the graph...

> Proposition: Let T be a tree decomposition of G with nodes S1,
..., SM. For any non-leaf Si in T, removing every u in Si from G
disconnects the graph.
– let Sj and Sk be two other nodes of T
– if u in Sj and u in Sk, then we must have u in Si

> tree nodes containing u form a (connected) sub-tree
> only path from Sj to Sk in T goes through Si

Separators
b

a

c d

> Recall: removing any non-leaf node from a tree
disconnects the graph...

> Proposition: Let T be a tree decomposition of G with nodes S1,
..., SM. For any non-leaf Si in T, removing every u in Si from G
disconnects the graph.
– let Sj and Sk be two other nodes of T
– if u in Sj and u in Sk, then we must have u in Si

– so each disconnected piece of T contains disjoint nodes of N – Si
> (removing Si from T disconnects T since it is a tree)
> only nodes in common are those of Si that we removed

Separators
b

a

c d

> Recall: removing any non-leaf node from a tree
disconnects the graph...

> Proposition: Let T be a tree decomposition of G with nodes S1,
..., SM. For any non-leaf Si in T, removing every u in Si from G
disconnects the graph.
– let Sj and Sk be two other nodes of T
– each disconnected piece of T contains disjoint nodes from N – Si

– every edge (u,v) of G appears as {u,v} ⊆ St for some t
– so any such edge with {u,v} ⊆N – Si is between appearing in the

same disconnected piece of T

Separators
b

a

c d

> Recall: removing any non-leaf node from a tree
disconnects the graph...

> Proposition: Let T be a tree decomposition of G with nodes S1,
..., SM. For any non-leaf Si in T, removing every u in Si from G
disconnects the graph.
– let Sj and Sk be two other nodes of T
– each disconnected piece of T contains disjoint nodes from N – Si

– any edge (u,v) of G with {u,v} ⊆N – Si is between appearing in
the same disconnected piece of T

– so subgraphs on nodes of each piece of T are disconnected

Separators
b

a

c d

> Intuition: problems are easy on trees because the
children of a node are independent given what is
happening in the parent
– DP only needs to consider the cases of what the parent might have

> For general graphs, we get the same property, but we may need
to consider what is happening in multiple nodes
– that number is the tree width

Separators
b

a

c d

> Independent Set: Given graph G and number k,
find a subset of k nodes such that no two are
connected by an edge

Recall: Independent Set on a Tree

> Apply dynamic programming...
– optimal solution on tree rooted at t = larger of

optimal solution with t excluded
(optimal solution to which t can be legally added) + 1

– optimal solution with t excluded =
(opt solution on x) + (opt solution on y) + (opt solution on z)

> no problem from edges (t,x), (t,y), (t,z) since t is not included
– optimal solution with t included =

(opt solution on x with x excluded) +
(opt solution on y with y excluded) +
(opt solution on z with z excluded)

> no problem from edges (t,x), (t,y), (t,z) since x, y, z not included

Independent Set on a Tree

t

x y z

> Only consider two possibilities for each subtree: whether or not
the root node is included in the solution

> Given node Si from a tree decomposition, we will consider every
option for which subset of those are included
– 2k total, where k = |Si|
– k is bounded by the 1 + tree width of the graph
– this is O(1) if tree width is O(1)

Independent Set and Tree Width

> Apply dynamic programming...
– optimal solution on subtree rooted at Si = largest of

optimal solution at Si with X included and (Si – X) excluded
(over each subset X of Si that are independent in G)

– optimal solution at Si with X included and Y excluded = |X| +
sum over the children Sj of Si of

optimal solution on subtree rooted at Sj
with X’ included and Y’ excluded
where X’ and Y’ are consistent with X and Y, respectively

> all choices for subtree rooted at Sj can be made independently
except for choices on nodes also appearing in Si
– recall: removing Si disconnects the graph into independent pieces

> (consistent meaning, e.g., X ∩ Si ∩ Sj = X’ ∩ Si ∩ Sj)

Independent Set and Tree Width

> Running time in terms of tree width, k
– table size is M 2k

– time per node is #children · k 2k

– total time is O(k M (2k)2)
> this can be easily optimized down to O(k M 2k)

> This is linear time for fixed k

Independent Set and Tree Width

> Tree Width
> TSP Approximation
> Integer Linear Programming

Outline for Today

> Traveling Salesperson Problem (TSP): Given weighted graph G
and number v, find a Hamiltonian cycle of minimum length
– cycle is Hamiltonian if it goes through each node exactly once

Traveling Salesperson Problem

from http://mathworld.wolfram.com/TravelingSalesmanProblem.html

> (symmetric) TSP

> Metric TSP: distances form a metric space
– satisfy the triangle inequality: d(a,c) ≤ d(a,b) + d(b,c)
– (direct path a ➝ c cannot be longer than indirect path a ➝ b ➝ c)

> Euclidian TSP: Euclidian distance between points
– special case of Metric TSP

TSP Special Cases

> Definition: c-approximation algorithm returns a solution that is
guaranteed to be within a factor c of optimal

> TSP cannot be efficiently approximated at all
– no efficient f(n)-approximation algorithm for any computable function f

> Sanjeev Arora (more later) helped prove the PCP theorem
> It implies that some NP-complete problems cannot be

efficiently approximated to any constant factor

TSP Approximations

> This is not true of Metric TSP

> Simple 2-approximation
– compute an MST in the graph

> cost is a lower bound on the shortest Hamiltonian cycle
(since a Hamiltonian cycle is also a ST + an extra edge)

pictures from
https://graphics.stanford.edu/courses/cs468-06-winter/Slides/steve_tsp_ptas_winter.pdf

Metric TSP 2-Approximation

> This is not true of Metric TSP

> Simple 2-approximation
– compute an MST in the graph

> cost is a lower bound on the shortest Hamiltonian cycle
(since a Hamiltonian cycle is also a ST + an extra edge)

– tour around the tree uses every edge twice
> cost is twice MST cost, so at most twice optimal value

– short-cutting to avoid re-visiting nodes cannot increase cost

Metric TSP 2-Approximation

> This is not true of Metric TSP

> Simple 2-approximation
– compute an MST in the graph

> cost is a lower bound on the shortest Hamiltonian cycle
(since a Hamiltonian cycle is also a ST + an extra edge)

– tour around the tree uses every edge twice
> cost is twice MST cost, so at most twice optimal value

– short-cutting to avoid re-visiting nodes cannot increase cost
> triangle inequality: direct path cannot be longer

Metric TSP 2-Approximation

> Improved algorithm due to Christofides

> Idea: try to find the optimal way to turn this MST into a tour
– in principle, that could be efficiently computable

> no reason to think the optimal solution can be found that way
> i.e., we haven’t proved P = NP

– actual algorithm will not quite do that

Metric TSP 3/2-Approximation

> Difficulty with the tree is odd-degree nodes
– e.g., leaf nodes
– they require us to return to the parent again

> Fact: if every node has even degree, then there
is a cycle that uses every edge exactly once
– called an “Euler tour”
– can build a path that never reuses an edge... must return to start

> becomes odd degree after using incoming edge, so 1+ edges left
– avoid leaving out any nodes by never using an edge whose

removal would disconnect the graph

Metric TSP 3/2-Approximation

> Difficulty with the tree is odd-degree nodes
– e.g., leaf nodes
– they require us to return to the parent again

> Idea: find a matching of the odd-degree nodes
– adding these to the graph makes every edge even degree
– hence, there is an Euler tour
– if any nodes are visited more than once, short-cutting out

the re-visits can only decrease the cost

Metric TSP 3/2-Approximation

> Theorem: min cost matching of odd-degree
nodes has cost at most 1/2 of min cost tour
– consider the min cost tour...

Metric TSP 3/2-Approximation

1 2 3 4 n...

> Theorem: min cost matching of odd-degree
nodes has cost at most 1/2 of min cost tour
– consider the min cost tour
– some of these are our odd degree nodes

Metric TSP 3/2-Approximation

1 2 3 4 n...

> Theorem: min cost matching of odd-degree
nodes has cost at most 1/2 of min cost tour
– consider the min cost tour
– some of these are our odd degree nodes
– short-cutting out the others can only decrease cost

Metric TSP 3/2-Approximation

1 3 n...

> Theorem: min cost matching of odd-degree
nodes has cost at most 1/2 of min cost tour
– consider the min cost tour
– some of these are our odd degree nodes
– short-cutting out the others can only decrease cost
– splitting every other edge into two sets gives two matchings

Metric TSP 3/2-Approximation

1 3 n...

> Theorem: min cost matching of odd-degree
nodes has cost at most 1/2 of min cost tour
– consider the min cost tour
– some of these are our odd degree nodes
– short-cutting out the others can only decrease cost
– splitting every other edge into two sets gives two matchings
– total length = (length of dark browns) + (length of light browns)

Metric TSP 3/2-Approximation

1 3 n...

> Theorem: min cost matching of odd-degree
nodes has cost at most 1/2 of min cost tour
– consider the min cost tour
– some of these are our odd degree nodes
– short-cutting out the others can only decrease cost
– splitting every other edge into two sets gives two matchings
– total length = (length of dark browns) + (length of light browns)
– min(length of dark browns, length of light browns)

≤ (1/2) total length
≤ (1/2) length of min cost Hamiltonian cycle
> due to shortcutting out the even degree nodes

Metric TSP 3/2-Approximation

> Theorem: min cost matching of odd-degree
nodes has cost at most 1/2 of min cost tour

> Algorithm returns shortcutting of (MST + matching of odd degrees)
– total cost is at most that of MST + min cost matching of odd degree nodes
– cost of MST ≤ min cost tour
– min cost matching of odd degrees ≤ (1/2) min cost tour
– cost of result ≤ (3/2) min cost tour

> (In practice, results are typically off by 10-15%)

Metric TSP 3/2-Approximation

> How do we actually compute a min-cost matching of the odd
degree nodes?

> Q: Is this a network flow problem?
> A: No

– that is only true of bipartite graphs

> Nonetheless, efficient algorithms exist
– can be solved in O(n3) time

Metric TSP 3/2-Approximation

> TSP cannot be approximated at all

> Metric TSP has 3/2-approximation
> BUT there is no (1 + ε)-approximation for some ε > 0

– best bound is ε > 0.008

> Arora: Euclidian TSP has (1 + ε)-approximation for any ε > 0
– depends exponentially on 1/ε (PTAS not FPTAS)

Euclidian TSP

> Arora: Euclidian TSP has (1 + ε)-approximation for any ε > 0
– depends exponentially on 1/ε (PTAS not FPTAS)

> Construction:
– moves cities to points on a grid
– considers only paths going through mid-points of gridlines

> Algorithm is complicated dynamic program
> Correctness proof is also complicated

– must use facts about Euclidian distance beyond triangle-inequality

Euclidian TSP

> Tree Width
> TSP Approximation
> Integer Linear Programming

Outline for Today

> A linear programming problem asks you to minimize a linear
function subject to linear equality and inequality constraints

> Example (from “Network Flows”):

minimize x1 + 2 x2 – x3 + x4 + 3 x5

subj. to x2 + x4 + x5 ≥ 5
x1 + x2 + x5 ≥ 12
x1 + x2 + x3 ≥ 10
x1 + x2 + x3 ≥ 6

and x1, x2, x3, x4, x5 ≥ 0

Linear Programs

> An integer linear programming problem asks you to find the best
solution to a linear program where all xi’s are integers

> Problem is NP-complete even if each is xi is restricted to {0,1}
– potentially still 2n solutions to consider

Integer Linear Programs

> Branch:
– nodes set {0,1} values for a subset of the xi’s

> e.g, [x1=0, x5=1, x2=1]
– branching factor will be 2

> previous + [xi=0] and previous + [xi=1]

> Q: How do we get a lower bound on a 0/1 Integer LP?
> A: Drop the integrality constraints

– rest is a normal LP that can be solved in polynomial time
– if answer is not integral, branch on a fractional xi

0/1 Integer Linear Programs

> Child nodes add additional xi = bi constraints to the LP

> This approach works very well in practice
– (note: need to use an LP solver that returns integer solutions when optimal)

> State-of-the-art solvers add some other techniques as well
– but B&B is at the core

0/1 Integer Linear Programs

