CSE 417 Branch \& Bound (pt 4) Branch E Bound

Reminders

> HW8 due today
> HW9 will be posted tomorrow

- start early
- program will be slow, so debugging will be slow...

Review of previous lectures

> Complexity theory: P \& NP

- answer can be found vs checked in polynomial time
> NP-completeness
- hardest problems in NP
$>$ Reductions
- reducing from Y to X proves $Y \leq X$
$>$ if you can solve X, then you can solve Y
$-X$ is NP-hard if every Y in $N P$ is $Y \leq X$

Review of previous lectures

Coping with NP-completeness:
more generally, only pay for distance from easy cases

1. Your problem could lie in a special case that is easy

- example: small vertex covers (or large independent sets)
- example: independent set on trees

2. Look for approximate solutions

- example: Knapsack with rounding

Review of previous lectures

3. Look for "fast enough" exponential time algorithms

- example: faster exponential time for 3-SAT
$>10 \mathrm{k}+$ variables and $1 \mathrm{~m}+$ clauses solvable in practice
> (versus <100 variables with brute force solution)
- example: Knapsack + Vertex Cover
> only pay exponential time in the difficulty of the vertex cover constraints
> will be fast if vertex covers are small
- example: register allocation
> model as a graph coloring problem
> use an approximation that works well on easy instances
> exponential time in distance from easy instances
- branch \& bound...

Outline for Today

$>$ Branch \& Bound
> Flow-Shop Scheduling
> Traveling Salesperson
> Integer Linear Programming

Generic Optimization Problem

> Generic Problem: Given a cost function $c(x)$ and (somehow) a set of possible solutions S , find the x in S with minimum $\mathrm{c}(\mathrm{x})$.

- S must be described implicitly since it can be exponentially large
> Example: Knapsack
- actual input is list of items: $\left(w_{i}, v_{i}\right)$ pairs
- S is the set of all subsets of the items
$-c(x)=-($ sum of the values of the items)

Generic Optimization Problem

> Generic Problem: Given a cost function $c(x)$ and (somehow) a set of possible solutions S , find the x in S with minimum $\mathrm{c}(\mathrm{x})$.

- S must be described implicitly since it can be exponentially large
> Example: Traveling Salesperson Problem
- actual input is a weighted graph
- S is the set of all Hamiltonian cycles on the given nodes
$-c(x)$ is the sum of the edges along the cycle

Brute Force Search

> Enumerate solutions as leaves of a tree:

- internal nodes split solution space into 2+ parts
- e.g., root node splits S into S_{0} and S_{1}

> Example: Knapsack
- $\mathrm{SO}=$ solutions that do not include item x_{n}
- S1 = solutions that include item X_{n}
> Example: TSP
- $\mathrm{S}_{0}=$ Hamiltonian cycles not including edge (u,v)
$-S_{1}=$ Hamiltonian cycles including edge (u,v)

Brute Force Search

> Enumerate solutions as leaves of a tree:

- internal nodes split solution space into 2+ parts
- e.g., root node splits S into S_{0} and S_{1}
- e.g., S_{0} splits into even smaller S_{00} and S_{01}
> Leaves are nodes with only 1 solution

Brute Force Search

> Enumerate solutions as leaves of a tree:

- internal nodes split solution space into 2+ parts
- leaves are nodes with only 1 solution
> Can implement this recursively
- nodes correspond to recursive calls
- pass along choices made so far

Brute Force Search

> Running time is $\mathrm{O}(|\mathrm{S}|) \cdot$ time per node

- |S| part is exponentially large
> We need to find a way to avoid exploring all nodes...

Branch \& Bound

> Idea for avoiding skipping node for S_{x} :

- get an upper bound, U, on the minimum solution value over all of S
- get a lower bound, L, on the minimum solution value over just S_{x}
- if $\mathrm{U}<\mathrm{L}$, then we can skip the node (and all children)
$>$ opt solution value $\leq \mathrm{U}<\mathrm{L} \leq$ any solution in S_{x}
- no solution in S_{x} could be optimal

Branch \& Bound

> Idea for avoiding skipping node for S_{x} :

- get an upper bound, U, on the minimum solution value over all of S
- get a lower bound, L, on the minimum solution value over just S_{x}
- if $U<L$, then we can skip the node (and all children)
> Easy upper bound: best solution found so far
- we know the opt solution must be at least that good as that (so opt $\leq \mathrm{U}$)
- (can still implement recursively... store this in, say, a field of the class)

Branch \& Bound

> Idea for avoiding skipping node for S_{x} :

- get an upper bound, U, on the minimum solution value over all of S
- get a lower bound, L, on the minimum solution value over just S_{x}
- if $U<L$, then we can skip the node (and all children)
> Typical lower bound: drop hard constraints ("relaxation")
- opt value on new problem can only be \leq than opt value on original problem
- drop constraints so new problem is solvable efficiently
- can be more than one way to do this
> finding the best choice requires careful analysis / experimentation
$>$ this is where the creativity comes in

Knapsack + Vertex Cover

> Problem: Given a set of items $\left\{\left(\mathrm{w}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)\right\}$, a weight limit W , and a collection of pairs $\{(i, j)\}$, find the subset of items with largest total value subject to the constraints that:

- total weight is under the limit
- for each pair (i, j), either i or j (or both) is included

Knapsack + Vertex Cover

S = vertex covers of G (only exponential part!)

KVC(G, I):

solve knapsack on (items - I) with W - (weight of I)
if best seen so far < knapsack value + (value of I): return -infinity
else if some edge (u,v) is not covered by solution:
lower bound:
ignores vertex cover constraints
return $\max (\operatorname{KVC}(G-\{u\}, I+\{u\})$,

\qquad split into

- those that cover u
else:
return knapsack value + (value of T)
- those that cover v
(note: not a true split... some duplicates!)

Branch \& Bound in Practice

> Most successful approach for exactly solving hard problems

- e.g.,NP-complete problems
- examples shown later: TSP \& integer programming
> Example: can solve TSP instances with 10,000+ nodes
- (that was true in 1990, and computers are 1000x faster now)
> Key point: spending more time per node is often faster
- intuition: difficult part is not finding the optimal solution it is proving that the optimal solution is really optimal (i.e., ruling out all the other options)

Branch \& Bound in Practice

> Can explore nodes of search tree in any order...
> Heuristic: explore the one with lowest upper bound

- ideally, will reduce the global upper bound the fastest, reducing tree size
> OTOH, depth first search is easier to code
- just use recursion
> In practice: DFS works just as well
- no point trying to explore the tree in a smart way

Outline for Today

$>$ Branch \& Bound
$>$ Flow-Shop Scheduling

> Traveling Salesperson
> Integer Linear Programming

Flow-Shop Scheduling

> Problem: Given a sequence of jobs 1 .. n where

- each job has two parts that need to be run on machines A and B
- the part on machine A must finish before starting the part on machine B
- the machine time required for the two parts are A_{i} and B_{i}, respectively find the schedule minimizing the sum of completion times.
> Example: A is a computer and B is a printer
- need to run the program to get the file for the printer

Flow-Shop Scheduling Example

> Consider the following inputs:

	A	B
Job 1	2 mins	1 min
Job 2	3 mins	1 min
Job 3	2 mins	3 mins

$>$ Running 1 then 3 then 2 is optimal...

- (this is in no way obvious...)

Flow-Shop Scheduling

> Some facts about the problem...

- from "Combinatorial Optimization" by Papadimitriou \& Steiglitz
> Flow-shop scheduling is NP-complete
- maybe not surprising
> There exists an optimal solution where:
- the jobs are run on on the two machines in the same order
$>$ no idle time on machine A
> only idle on B waiting for previous item in order to finish
- result: we can limit our search space to permutations

Flow-Shop Scheduling

> Branching (searching over permutations):

- nodes correspond to permutations that start with a particular prefix
- branching factor of the tree is n, not 2
> Bounding:
- need to throw away enough constraints to make this solvable...

Flow-Shop Scheduling

> Idea: let multiple jobs use B simultaneously

- dropping the constraint that jobs must run sequentially on B
- keeping the constraint that they must run sequentially on A
- keeping the constraint that the first part must run before the second
> Suppose the first j items are fixed so far...
- time when $k>j$ finishes on B is $\left(A_{1}+\ldots+A_{j}\right)+A_{j+1}+\ldots+A_{k}+B_{k}$
$>$ can always run B part immediately due to dropped constraint
- first part, $A_{1}+\ldots+A_{j}$, is always included
- last part, B_{k}, is always include
- middle part, $\mathrm{A}_{\mathrm{j}+1}+\ldots+\mathrm{A}_{\mathrm{k}}$, can improve with better order

Flow-Shop Scheduling

> Suppose the first kitems are fixed so far...

- time when $k>j$ finishes on B is $\left(A_{1}+\ldots+A_{j}\right)+A_{j+1}+\ldots+A_{k}+B_{k}$ $>$ can always run B part immediately due to dropped constraint
- first part, $A_{1}+\ldots+A_{j}$, is always included
- last part, B_{k}, is always include
- middle part, $A_{j+1}+\ldots+A_{k}$, can improve with better order
> Fact: minimized if we order the elements by increasing A_{i}
- one run first shows up in every sum
- one run second shows up all but one sum
- etc.

Flow-Shop Scheduling

> Idea: let multiple jobs use B simultaneously
> Get a lower bound by taking the items in order of ascending A_{i}
> Idea: let multiple jobs use A simultaneously
> Get a lower bound by taking the items in order of ascending B_{i}
> Take the larger of those two bounds

- reportedly very effective in practice

Flow-Shop Scheduling

Outline for Today

$>$ Branch \& Bound
> Flow-Shop Scheduling
> Traveling Salesperson
> Integer Linear Programming

Traveling Salesperson Problem

> Traveling Salesperson Problem (TSP): Given weighted graph G and number v, find a Hamiltonian cycle of minimum length

- cycle is Hamiltonian if it goes through each node exactly once

from http://mathworld.wolfram.com/TravelingSalesmanProblem.htm|

Traveling Salesperson Problem

> Branching:

- nodes fix a subset of the edges to be included or excluded
- put the edges in a fixed order
- level i in the tree branches using the i-th edge
$>$ first branch is forced to use that edge
> second branch is disallowed from using it (can remove it from the graph)

Traveling Salesperson Problem

> Bound 1: remove restriction of only using a node once

- Hamiltonian cycle is a cycle including every node

Traveling Salesperson Problem

> Bound 1: remove restriction of only using a node once

- Hamiltonian cycle is a cycle including every node
- removing a node leaves a subgraph that is connected and acyclic
> Q: What do we call the least cost collection of edges that connect all the nodes without cycles?

Traveling Salesperson Problem

> Bound 1: remove restriction of only using a node once

- Hamiltonian cycle is a cycle including every node
- removing a node leaves a subgraph that is connected and acyclic
> Q: What do we call the least cost collection of edges that connect all the nodes without cycles?
> A: Minimum spanning tree

Traveling Salesperson Problem

> Bound 1: remove restriction of only using a node once

- Hamiltonian cycle is a cycle including every node
- removing a node leaves a subgraph that is connected and acyclic
> Q: What do we call the least cost collection of edges that connect all the nodes without cycles?
> A: Minimum spanning tree
> Adding back the node \& 2 edges may not be a cycle
- there may also be multiple ways to include the node...

Traveling Salesperson Problem

> Bound 1: remove restriction of only using a node once

- compute an MST on nodes 2 .. n
- add node 1 by connecting it to its two closest neighbors
- result cannot be longer than the shortest Hamiltonian cycle
$>$ (If we want, we can try this also with node 1 replaced by node $2,3, \ldots$, to see if we can improve the bound.)
> Gets more complicated once some edges are fixed
- can modify an MST algorithm to start with some included

Traveling Salesperson Problem

> Bound 2: remove restriction of being connected

- Hamiltonian cycle is a connected subgraph where every node has exactly two incident edges

W

Traveling Salesperson Problem

> Bound 2: remove restriction of being connected

- Hamiltonian cycle is a connected subgraph where every node has exactly two incident edges
- without connectivity requirement, result may be a collection of disjoint cycles
- this is sometimes called a "2-factor"
> Q: How do we find the least cost 2-factor?

W

Traveling Salesperson Problem

> Bound 2: remove restriction of being connected

- Hamiltonian cycle is a connected subgraph where every node has exactly two incident edges
- without connectivity requirement, result may be a collection of disjoint cycles
- this is sometimes called a "2-factor"
> Q: How do we find the least cost 2-factor?
> A: It's a min cost flow problem!
- put upper and lower bounds of 1 on node capacities
- every node has one incoming and one outgoing flow

Traveling Salesperson Problem

> Bound 2: remove restriction of being connected

- least cost 2-factor gives a lower bound on TSP
- easy to include the fixed edges:
> set lower bounds on those as well
> Even though it may take $\Omega(\mathrm{nm})$ time to compute the lower bound, that can easily pay for itself...

Additional Results
 (out of scope)

> MST lower bound can be improved (Held-Karp)

- increasing the length of every edge into u by T does not change opt cycle
$>$ every cycle must use 2 such edges, so all are increased by $2 T$
- however, this can change the MST
- repeatedly apply this to MST nodes with degree > 2 to eliminate them
> stop when it's not improving much anymore
> 2-factor lower bound can be improved
- re-write as an LP
- add constraints to eliminate "sub-tours"
- potentially need 2^{n}... and result still may be fractional

Additional Results
 (out of scope)

> MST lower bound can be improved (Held-Karp)
> 2-factor lower bound can be improved
> Theorem (Held-Karp): lower bounds produced by these two techniques are identical

- in practice, the iterative Held-Karp approach is faster

Traveling Salesperson Problem

> Algorithm works extremely well in practice

- solved problems with 10k+ nodes 20+ years ago
- on one instance with $1 \mathrm{k}+$ cities, searched only 25 tree nodes
> versus a potential of > 2^{1000} nodes
> Key point: more expensive lower bounds can easily pay for themselves by reducing the size of the search tree

