
CSE 417
Branch & Bound (pt 4)
Branch & Bound

> HW8 due today

> HW9 will be posted tomorrow
– start early
– program will be slow, so debugging will be slow...

Reminders

> Complexity theory: P & NP
– answer can be found vs checked in polynomial time

> NP-completeness
– hardest problems in NP

> Reductions
– reducing from Y to X proves Y ≤ X

> if you can solve X, then you can solve Y
– X is NP-hard if every Y in NP is Y ≤ X

Review of previous lectures

Coping with NP-completeness:

1. Your problem could lie in a special case that is easy
– example: small vertex covers (or large independent sets)
– example: independent set on trees

2. Look for approximate solutions
– example: Knapsack with rounding

Review of previous lectures
more generally, only pay for
distance from easy cases

3. Look for “fast enough” exponential time algorithms
– example: faster exponential time for 3-SAT

> 10k+ variables and 1m+ clauses solvable in practice
> (versus <100 variables with brute force solution)

– example: Knapsack + Vertex Cover
> only pay exponential time in the difficulty of the vertex cover constraints
> will be fast if vertex covers are small

– example: register allocation
> model as a graph coloring problem
> use an approximation that works well on easy instances
> exponential time in distance from easy instances

– branch & bound...

Review of previous lectures

> Branch & Bound
> Flow-Shop Scheduling
> Traveling Salesperson
> Integer Linear Programming

Outline for Today

> Generic Problem: Given a cost function c(x) and (somehow) a
set of possible solutions S, find the x in S with minimum c(x).
– S must be described implicitly since it can be exponentially large

> Example: Knapsack
– actual input is list of items: (wi, vi) pairs
– S is the set of all subsets of the items
– c(x) = –(sum of the values of the items)

Generic Optimization Problem

> Generic Problem: Given a cost function c(x) and (somehow) a
set of possible solutions S, find the x in S with minimum c(x).
– S must be described implicitly since it can be exponentially large

> Example: Traveling Salesperson Problem
– actual input is a weighted graph
– S is the set of all Hamiltonian cycles on the given nodes
– c(x) is the sum of the edges along the cycle

Generic Optimization Problem

> Enumerate solutions as leaves of a tree:
– internal nodes split solution space into 2+ parts
– e.g., root node splits S into S0 and S1

> Example: Knapsack
– S0 = solutions that do not include item xn

– S1 = solutions that include item xn

> Example: TSP
– S0 = Hamiltonian cycles not including edge (u,v)
– S1 = Hamiltonian cycles including edge (u,v)

Brute Force Search
S

S0 S1

> Enumerate solutions as leaves of a tree:
– internal nodes split solution space into 2+ parts
– e.g., root node splits S into S0 and S1

– e.g., S0 splits into even smaller S00 and S01

> Leaves are nodes with only 1 solution

Brute Force Search
S

S0 S1

S00 S11

> Enumerate solutions as leaves of a tree:
– internal nodes split solution space into 2+ parts
– leaves are nodes with only 1 solution

> Can implement this recursively
– nodes correspond to recursive calls
– pass along choices made so far

> Leaf node returns cost of its 1 solution, c(x)
> Internal node returns minimum cost from its children

Brute Force Search
S

S0 S1

S00 S11

> Running time is O(|S|) · time per node
– |S| part is exponentially large

> We need to find a way to avoid exploring all nodes...

Brute Force Search

S

S0 S1

S00 S11

> Idea for avoiding skipping node for Sx:
– get an upper bound, U, on the minimum solution value over all of S
– get a lower bound, L, on the minimum solution value over just Sx

– if U < L, then we can skip the node (and all children)

> opt solution value ≤ U < L ≤ any solution in Sx
– no solution in Sx could be optimal

Branch & Bound

S

S0 S1

S00 S11

> Idea for avoiding skipping node for Sx:
– get an upper bound, U, on the minimum solution value over all of S
– get a lower bound, L, on the minimum solution value over just Sx

– if U < L, then we can skip the node (and all children)

> Easy upper bound: best solution found so far
– we know the opt solution must be at least that good as that (so opt ≤ U)
– (can still implement recursively... store this in, say, a field of the class)

Branch & Bound

S

S0 S1

S00 S11

> Idea for avoiding skipping node for Sx:
– get an upper bound, U, on the minimum solution value over all of S
– get a lower bound, L, on the minimum solution value over just Sx

– if U < L, then we can skip the node (and all children)

> Typical lower bound: drop hard constraints (“relaxation”)
– opt value on new problem can only be ≤ than opt value on original problem
– drop constraints so new problem is solvable efficiently
– can be more than one way to do this

> finding the best choice requires careful analysis / experimentation
> this is where the creativity comes in

Branch & Bound

S

S0 S1

S00 S11

> Problem: Given a set of items {(wi, vi)}, a weight limit W, and a
collection of pairs {(i, j)}, find the subset of items with largest
total value subject to the constraints that:
– total weight is under the limit
– for each pair (i, j), either i or j (or both) is included

Knapsack + Vertex Cover

KVC(G, I):
solve knapsack on (items – I) with W – (weight of I)

if best seen so far < knapsack value + (value of I):
return –infinity

else if some edge (u,v) is not covered by solution:
return max(KVC(G – {u}, I + {u}),

KVC(G – {v}, I + {v})

else:
return knapsack value + (value of T)

Knapsack + Vertex Cover
S = vertex covers of G

(only exponential part!)

split into
• those that cover u
• those that cover v

(note: not a true split...
some duplicates!)

lower bound:
ignores vertex cover
constraints

> Most successful approach for exactly solving hard problems
– e.g., NP-complete problems
– examples shown later: TSP & integer programming

> Example: can solve TSP instances with 10,000+ nodes
– (that was true in 1990, and computers are 1000x faster now)

> Key point: spending more time per node is often faster
– intuition: difficult part is not finding the optimal solution

it is proving that the optimal solution is really optimal
(i.e., ruling out all the other options)

Branch & Bound in Practice

> Can explore nodes of search tree in any order...

> Heuristic: explore the one with lowest upper bound
– ideally, will reduce the global upper bound the fastest, reducing tree size

> OTOH, depth first search is easier to code
– just use recursion

> In practice: DFS works just as well
– no point trying to explore the tree in a smart way

Branch & Bound in Practice

> Branch & Bound
> Flow-Shop Scheduling
> Traveling Salesperson
> Integer Linear Programming

Outline for Today

> Problem: Given a sequence of jobs 1 .. n where
– each job has two parts that need to be run on machines A and B
– the part on machine A must finish before starting the part on machine B
– the machine time required for the two parts are Ai and Bi, respectively

find the schedule minimizing the sum of completion times.

> Example: A is a computer and B is a printer
– need to run the program to get the file for the printer

Flow-Shop Scheduling

> Consider the following inputs:

> Running 1 then 3 then 2 is optimal...
– (this is in no way obvious...)

Flow-Shop Scheduling Example

A B
Job	1 2	mins 1	min

Job	2 3	mins 1	min

Job	3 2	mins 3	mins

> Some facts about the problem...
– from “Combinatorial Optimization” by Papadimitriou & Steiglitz

> Flow-shop scheduling is NP-complete
– maybe not surprising

> There exists an optimal solution where:
– the jobs are run on on the two machines in the same order

> no idle time on machine A
> only idle on B waiting for previous item in order to finish

– result: we can limit our search space to permutations

Flow-Shop Scheduling

> Branching (searching over permutations):
– nodes correspond to permutations that start with a particular prefix
– branching factor of the tree is n, not 2

> Bounding:
– need to throw away enough constraints to make this solvable...

Flow-Shop Scheduling

> Idea: let multiple jobs use B simultaneously
– dropping the constraint that jobs must run sequentially on B
– keeping the constraint that they must run sequentially on A
– keeping the constraint that the first part must run before the second

> Suppose the first j items are fixed so far...
– time when k > j finishes on B is (A1 + ... + Aj) + Aj+1 + ... + Ak + Bk

> can always run B part immediately due to dropped constraint
– first part, A1 + ... + Aj, is always included
– last part, Bk, is always include
– middle part, Aj+1 + ... + Ak, can improve with better order

Flow-Shop Scheduling

> Suppose the first k items are fixed so far...
– time when k > j finishes on B is (A1 + ... + Aj) + Aj+1 + ... + Ak + Bk

> can always run B part immediately due to dropped constraint
– first part, A1 + ... + Aj, is always included
– last part, Bk, is always include
– middle part, Aj+1 + ... + Ak, can improve with better order

> Fact: minimized if we order the elements by increasing Ai
– one run first shows up in every sum
– one run second shows up all but one sum
– etc.

Flow-Shop Scheduling

> Idea: let multiple jobs use B simultaneously

> Get a lower bound by taking the items in order of ascending Ai

> Idea: let multiple jobs use A simultaneously

> Get a lower bound by taking the items in order of ascending Bi

> Take the larger of those two bounds
– reportedly very effective in practice

Flow-Shop Scheduling

Flow-Shop Scheduling

A B
Job	1 2	mins 1	min

Job	2 3	mins 1	min

Job	3 2	mins 3	mins

[]

[1] [2] [3]

[1,2] [1,3]

[1,2,3] [1,3,2]

[3,1] [3,2]

= 19 = 18

≥ 20

≥ 19 ≥ 19

> Branch & Bound
> Flow-Shop Scheduling
> Traveling Salesperson
> Integer Linear Programming

Outline for Today

> Traveling Salesperson Problem (TSP): Given weighted graph G
and number v, find a Hamiltonian cycle of minimum length
– cycle is Hamiltonian if it goes through each node exactly once

Traveling Salesperson Problem

from http://mathworld.wolfram.com/TravelingSalesmanProblem.html

> Branching:
– nodes fix a subset of the edges to be included or excluded
– put the edges in a fixed order
– level i in the tree branches using the i-th edge

> first branch is forced to use that edge
> second branch is disallowed from using it (can remove it from the graph)

Traveling Salesperson Problem

> Bound 1: remove restriction of only using a node once
– Hamiltonian cycle is a cycle including every node

Traveling Salesperson Problem

> Bound 1: remove restriction of only using a node once
– Hamiltonian cycle is a cycle including every node
– removing a node leaves a subgraph that is connected and acyclic

> Q: What do we call the least cost collection of edges
that connect all the nodes without cycles?

Traveling Salesperson Problem

> Bound 1: remove restriction of only using a node once
– Hamiltonian cycle is a cycle including every node
– removing a node leaves a subgraph that is connected and acyclic

> Q: What do we call the least cost collection of edges
that connect all the nodes without cycles?

> A: Minimum spanning tree

Traveling Salesperson Problem

> Bound 1: remove restriction of only using a node once
– Hamiltonian cycle is a cycle including every node
– removing a node leaves a subgraph that is connected and acyclic

> Q: What do we call the least cost collection of edges
that connect all the nodes without cycles?

> A: Minimum spanning tree

> Adding back the node & 2 edges may not be a cycle
– there may also be multiple ways to include the node...

Traveling Salesperson Problem

> Bound 1: remove restriction of only using a node once
– compute an MST on nodes 2 .. n
– add node 1 by connecting it to its two closest neighbors
– result cannot be longer than the shortest Hamiltonian cycle

> (If we want, we can try this also with node 1 replaced
by node 2, 3, ..., to see if we can improve the bound.)

> Gets more complicated once some edges are fixed
– can modify an MST algorithm to start with some included

Traveling Salesperson Problem

> Bound 2: remove restriction of being connected
– Hamiltonian cycle is a connected subgraph

where every node has exactly two incident edges

Traveling Salesperson Problem

> Bound 2: remove restriction of being connected
– Hamiltonian cycle is a connected subgraph

where every node has exactly two incident edges
– without connectivity requirement,

result may be a collection of disjoint cycles
– this is sometimes called a “2-factor”

> Q: How do we find the least cost 2-factor?

Traveling Salesperson Problem

> Bound 2: remove restriction of being connected
– Hamiltonian cycle is a connected subgraph

where every node has exactly two incident edges
– without connectivity requirement,

result may be a collection of disjoint cycles
– this is sometimes called a “2-factor”

> Q: How do we find the least cost 2-factor?
> A: It’s a min cost flow problem!

– put upper and lower bounds of 1 on node capacities
– every node has one incoming and one outgoing flow

Traveling Salesperson Problem

> Bound 2: remove restriction of being connected
– least cost 2-factor gives a lower bound on TSP
– easy to include the fixed edges:

> set lower bounds on those as well

> Even though it may take Ω(nm) time to compute the
lower bound, that can easily pay for itself...

Traveling Salesperson Problem

> MST lower bound can be improved (Held-Karp)
– increasing the length of every edge into u by T does not change opt cycle

> every cycle must use 2 such edges, so all are increased by 2T
– however, this can change the MST
– repeatedly apply this to MST nodes with degree > 2 to eliminate them

> stop when it’s not improving much anymore

> 2-factor lower bound can be improved
– re-write as an LP
– add constraints to eliminate “sub-tours”
– potentially need 2n... and result still may be fractional

Additional Results
(out of scope)

> MST lower bound can be improved (Held-Karp)

> 2-factor lower bound can be improved

> Theorem (Held-Karp): lower bounds produced by these two
techniques are identical
– in practice, the iterative Held-Karp approach is faster

Additional Results
(out of scope)

> Algorithm works extremely well in practice
– solved problems with 10k+ nodes 20+ years ago
– on one instance with 1k+ cities, searched only 25 tree nodes

> versus a potential of > 21000 nodes

> Key point: more expensive lower bounds can easily pay for
themselves by reducing the size of the search tree

Traveling Salesperson Problem

