CSE 417
Branch & Bound (pt 3)

"Fast Enough” Exponential Time

Review of previous lectures

> Complexity theory: P & NP

— answer can be found vs checked in polynomial time

> NP-completeness
— hardest problems in NP

> Reductions

— reducing fromY to X proves Y < X
> if you can solve X, then you can solve Y

— Xis NP-hard if every Yin NPisY <X

Review of previous lectures

more generally, only pay for
. . distance from easy cases
Coping with NP-completeness:

1. Your problem could lie in a special case that is easy
— example: small vertex covers (or large independent sets)
— example: independent set on trees

2. Look for approximate solutions
— example: Knapsack with rounding

3. Look for “fast enough” exponential time algorithms

Next two lectures

3. Look for “fast enough” exponential time algorithms

— “For every polynomial time algorithm you have,
there's an exponential time algorithm | would rather run.”
— Alan Perlis

— In practice, it doesn't really matter if the algorithm scales exponentially
as long as it finishes in a reasonable amount of time
on the data you need to run it on.
> we also have more computing power now than ever before

— Applies to both decision problems and optimization

k

/\

k-1 k-1

Search Trees /\ /\

k-2 k-2 k-2 k-2

> Vertex Cover algorithm showed
an example of a search tree
— tree of recursive calls

— VertexCover(G, k) calls
VertexCover(G - {u}, k- 1) and
VertexCover(G - {v}, k - 1) for some edge (u,v)

> Each node corresponds to a set of choices about what
sort of solution to look for
— each node looks G - {u4, U, ..., Uy}
— removed those are the ones are going to use (so don't need cover)

k

/\

k-1 k-1

Search Trees /\ /\

k-2 k-2 k-2 k-2

> Vertex Cover algorithm showed
an example of a search tree
— easily implemented recursively

> Each node corresponds to a set of choices about what sort of
solution to look for

> Running time is O(#nodes - time per node)
— #nodes is exponential in the worst case
— key point: work hardest on reducing #nodes not time per node

Recall: SAT and 3-SAT

> SAT: Given a logical formula on variables x;, ..., X, using only and,
or, & not, determine whether there is a setting of the variables
to T/F so that the formula evaluatesto T

> 3-SAT: As above, but formula is of the form “t,; and t, ... and t.,”,
where each t; is of the form “f;; or f,, or f5",
where each f; is either “x,” or “not x,” for some k

— e.g.. ((notx,)orx,orxs)and
(X4 or (not x,) or x3) and
((not x4) or (not x,) or (not x3))

Brute Force Algorithm H’TAHAT

> Search tree with nodes for {x,=T/F, ..., X,=T/F}
— root node has empty set {} of assignments
— two children of node with assignments {x,=T/F, ..., x,=T/F} are
> {X,=T/F, ..., X=T/F} + {Xsq = TH AND
> {X,=T/F, X=T/F} + {Xysq = F}

> #nodes is O(2")

> time per node is O(m) in leaves
— leaf nodes have T/F value for every variable
— evaluate each clause, see if all are satisfied

Improved Algorithm

> Look at individual clause “f; or f, or f3” and
consider how it could be satisfied...

> Either havef,=Torf,=Torf;=T
— (or rather, cannot have all three being F)

> Each f;is either x; or not x;
so setting f, = T is setting Xp=Torx;=F

(I)=(xlvxzvx3)A(x1V.x2V.X3) A(xlvx2vx4)

Improved Algorithm

> Look at individual clause “f; or f, or f5”
— suppose these correspond to variable x; x;, and x,
— suppose those are satisfied by setting x; = b;, X; = b;, and x, = b, resp.

> CanSatisfy(P) iff

CanSatisfy(P, {xi=b;}) or CanSatisfy(P, {x;}=b;}) or CanSatisfy(P, {x,=0by})
— one of those must work if F is satisfiable

(D=(xlvx2vx3)A(xlvvax3) A(xlvx2vx4)

Improved Algorithm

> CanSatisfy(P) iff
CanSatisfy(P, {x;=b;}) or CanSatisfy(P, {x;=b;}) or CanSatisfy(P, {x,=by})
— one of those must work if P is satisfiable

> Running time satisfies T(n) =3 T(n - 1) + O(m)
— solution is O(m 3n)
— that'’s actually worse than brute force!

Improved Algorithm

> Improve it with this observation:
we only care about satisfying P with x; = b if
there is no way to satisfy it with x; = b,

> In other words, if there is no solution where f, is satisfied,
then we should look for solutions where f, is T and f; is F
— no point in considering f; =T anymore
— we already showed there is no solution with that property

(D=(xlvx2vx3)A(xlvvax3) A(xlvx2vx4)

Improved Algorithm

> |If there is no solution where f, is satisfied, then
we should look for solutions where f, is Tand f, is F
— no point in considering f; =T anymore

> CanSatisfy(P) iff
CanSatisfy(P, {x;= b}) or
CanSatisfy(P, {x; = not b, xj=bj}) or
CansSatisfy(P, {x; = not b;, X; = not b;, X,=by})

Improved Algorithm

> CanSatisfy(P) iff
CanSatisfy(P, {x;=b}) or
CanSatisfy(P, {x; = not b, X;=b;}) or
CanSatisfy(P, {x; = not b;, X; = not b;, x,=b})

> Running time satisfies: T(n) < T(n-1) + T(n-2) + T(n-3) + O(m)

> Solution is O(m 1.84")

— not hard to check that this holds
> use fact that ~1.84 is largest root of r3=r2 +r + 1

More Algorithms

> There is a 3-SAT algorithm that runs in O(1.334") time

> In practice, SAT solvers work surprisingly well
— can solve problems with >10k variables and >1m clauses

> Reduction to 3-SAT lets you use this solver to solve your problem
— note: that does not prove your problem is NP-complete
> need to reduce from 3-SAT to prove that

— (Cook proved every NP problem reduces to 3-SAT
but the reduction is very inefficient)

Knapsack + Vertex Cover

> Problem: Given a set of items {(w, v;)}, a weight limit W, and a
collection of pairs {(i, j)}, find the subset of items with largest
total value subject to the constraints that:

— total weight is under the limit
— for each pair (i, j), either i or j (or both) is included

> HW6 was a special case of Knapsack + Independent Set

Knapsack + Vertex Cover

> Saw a recursive strategy earlier
— efficient if the vertex cover is small
— it may not be here...

> Alternative strategy: hope that opt solutions are often covers
— in HW®6, opt solution often did not violate independence constraints
— this strategy will also work well if the vertex cover is small

Knapsack + Vertex Cover

> Recall our algorithm for Vertex Cover:

VertexCover(G, k):

if k > 0:
pick an edge (u,v)
return VertexCover(G - {u}, k-1) ||
VertexCover(G - {v}, k-1)

else:
return true iff G has no edges

Knapsack + Vertex Cover

> Algorithm for Knapsack + Vertex Cover...

— change leaf nodes to solve Knapsack
> all items in the cover are included... let knapsack choose the rest

KVC(G, S):
1f G has an edge:
pick an edge (u,v)
return max(KVC(G - {u}, S + {u}),
KVC(G - {v}, S + {v})
else:
return Knapsack(items - S, W - (weight of S))
+ (value of S)

k

k-1 k-1
k-2 k-2 k-2 k-2

Knapsack + Vertex Cover e

> Algorithm for Knapsack + Vertex Cover...

— change leaf nodes to solve Knapsack
> all items in the cover are included... let knapsack choose the rest

> So far, this will search through all possible set covers
— exponentially many: potentially 2™ in worst case
— fastif the graph is small

> We can do better if best solutions are usually covers...

k

k-1 k-1
k-2 k-2 k-2 k-2

Knapsack + Vertex Cover e

> We can do better if best solutions are usually covers...

> Try solving knapsack at internal nodes of search tree also

— if knapsack solution is a vertex cover, then no need to recurse further

> that must be the optimal solution
— itis optimal amongst all knapsack solutions
— even those that are not vertex covers

— if knapsack has no solution, then no need to recurse further
> there is no solution

— otherwise, recurse as usual

Knapsack + Vertex Cover

KVC(G, S):
solve knapsack on (items — S) with W — (weight of S)

1f there 1is no solution:
return —infinity (no point searching further)

else 1f some edge (u,v) is not covered by solution:

return max(KVC(G - {u}, S + {u}),
KVC(G - {v}, S + {v})

else:
return knapsack value + (value of S)

k

k-1 k-1
k-2 k-2 k-2 k-2

Knapsack + Vertex Cover e

> Try solving knapsack at internal nodes of search tree also
— stop recursion if we find a solution or there is no solution

> |f knapsack solutions are usually covers,
then this will be much faster
— ideally, we will solve knapsack only once
— (this was the case in HW6)

> If knapsack solutions are usually not covers,
then this will be slower, but not by much
— only a factor of 2 slower in the worst case

Principles

> Important lessons about exponential time searches...

1. Slow (poly time) work in each node can easily pay for itself

— intuition may suggest you want fast checks in each node
BUT expensive checks often pay for themselves by shrinking tree

— (this comes up frequently in branch & bound...)

2. Try to limit exponential search to hard constraints only

— without VC constraints, last problem was efficiently solvable
— try to only pay exponential time for difficulty of those constraints

Graph Coloring

> Problem: Given a graph G and a number k, find an assignment
of colors to nodes such that, for every edge (u,v) in G, u and v are

assigned different colors.

> Properties:

— easywhenk=2
> graph is bipartite iff it is 2-colorable

— NP-complete when k > 3

3-SAT = 3-Coloring

> @Given a formula such as

<I)=(x1vx2vx3)/\(x1vx2vx3) A(xlvxzvx4)

W

> Need to find a graph that is 3-colorable iff
the formula is satisfiable

3-SAT = 3-Coloring

> Create triangles {N, T, F} and {N, x;, not x;} for each variable xi
— all three nodes in a triable must get different colors
— color of T indicates true and color of F indicates false

I n

— each “x," and “not x," node is assigned T or F
> cannot be assigned N color due to triangle

(triangle for each of xy, Xy, ..., X,)

3-SAT = 3-Coloring

> Represent “x or y” by a triangle:

> Can check that: @

— X=y=Tmeans“xory”"=T
— X=y=Fmeans”"xory”=F .@
— x=Tandy = F(or vice versa) Q

means “x or y” is arbitrary y

> If we force “x ory” =T,
then we must have either x =T ory =T or both

3-SAT = 3-Coloring

> Force “x ory or 2" to be true like this:
— triangle with N/F forces “xoryorz’'=T

— that forces at leastone of {x,y,z} tobe T
> see previous slide

3-SAT = 3-Coloring

> This is an example of a “gadget” proof

— triangle connected to x and y is an “OR gadget”
> represents SAT “or” operator within the context of coloring

> Similar techniques are used in many other reductions

— depend on careful understanding of details of the problem
> (that's why we're not going to study them carefully...)

Graph Coloring

> Next: at an important application of graph coloring in compilers

> A little background first...

W

Computer Architecture

> Typical processor instructions:
— load from memory to registers CPU
— store from registers to memory . —

— operations on registers:
> arithmetic
> comparisons
> eftc.

registers

memory

Register Allocation

> Compilers translates source code
(e.g., Java) to processor instructions

> To do so, it must choose how to assign
local variables to registers
— (CPUs have a fixed number (e.g., 32) of registers

— any two variables needed at the same time
should be assigned to different registers

— those not needed can be “spilled” to memory
> i.e., written to memory and later read back
> this has a cost

CPU
—
1

registers

memory

Register Allocation

> To do so, it must choose how to assign
local variables to registers CPU
— CPUs have a fixed number (e.g., 32) of registers . —

— any two variables needed at the same time
should be assigned to different registers registers

> Model as graph coloring: memory
— nodes for local variables
— each color indicates a register

— edges between local variables used at the
same time (cannot be in same register)

Graph Coloring

> (Can speed up the exponential search considerably...

> |dea: simplify the graph by removing all nodes with <k neighbors
— (neighbors are nodes directly connected to it by edges)

> Any such node can be easily colored no matter what colors are
chosen for the other nodes
— just pick one of the colors not used by any of its neighbors
— since it has <k neighbors, some color is not used

Graph Coloring

> |dea: simplify the graph by removing all nodes with <k neighbors
— any such node can be easily colored no matter the colors of the other nodes
— this can be repeated: removing a node takes away neighbors of other nodes

— sometimes (not always) this solves the problem
> simplifies all the way down to an empty graph

> Rather than doing an exponential search over resulting graph,
we will change the problem slightly

— allow (u,v) to have both u and v assigned the same color
BUT doing so has an associated cost

— (cost relates to expense of moving variables in/out of memory)

e
Register Allocation f

registers

memory
> Model as variant of graph coloring:

— given weighted graph G, find a coloring of the nodes
minimizing sum of costs on conflicting edges

— (edge (u,v) is conflicting if u and v are assigned same color)

> In particular, we will restrict to colorings produced by the
process described before

— i.e., remove least cost set of edges so that the resulting graph can be colored
simply by repeatedly removing nodes with <k neighbors

— (should still be NP-complete)

CPU
- ——
t

registers

Register Allocation

Color(G, k):

memory
try to solve by repeatedly removing nodes with <k neighbors

1f 1t works:
return 0 (no edges removed, so no cost)

else:
leastCost = infinity
for every edge (u,v) 1in resulting Graph:
cost = Color(G - (u,v), k) + (cost of (u,v))
leastCost = min(cost, leastCost)
return leastCost

CPU
- ——
t

registers

> As with Knapsack, can run very quickly when there is a high ~ memory
likelihood that graph will be colored quickly

— exact algorithm can still be fast if it usually only takes a few edge
removals to get a graph that can be colored

— unlike K+VC example, it mixes approximation with exponential time search

Register Allocation

> This idea is commonly used in real compilers

— however, they often only solve it approximately (not exactly)
> sometimes use fixed strategy for which one edge should be removed
> others perform some amount of search

— extremely fast (often roughly linear time) in practice

k

k-1 k-1
k-2 k-2 k-2 k-2

Branch & Bound i

> 3-SAT and graph coloring examples were decision problems
— can stop searching when we find any solution

> For optimization, we need to find the best solution
— one approach: solve decision version + binary search

— usual approach: return the best solution found in subtree
> root of entire tree returns the best overall solution
> example: K+VC, min cost graph coloring

Branch & Bound

> For optimization, we need to find the best solution
— usual approach: return the best solution found in subtree

> Can still stop searching a subtree IF
we can prove that it cannot contain the best solution
— keep track of best value v seen so far (anywhere in the tree)

— stop if we can prove opt in subtree is worse than v
> note: do not have to compute opt in subtree to do this!

> Branch (search tree) &
Bound (eliminate subtree using lower/upper bounds)

Branch & Bound

> (Can still stop searching a subtree IF
we can prove that it cannot contain the best solution
— keep track of min value v seen so far (anywhere in the tree)
— stop if we can prove opt in subtree is worse than v

> Bound opt in subtree by removing constraints

— solving the problem without that constraint can only improve solution

— if thatis still worse than v, then opt in subtree is worse than v as well
> found opt in a subset of solutions that includes subtree opt

Branch & Bound

> Bound opt in subtree by removing constraints
— solving the problem without that constraint can only improve solution

> Example: Knapsack + Vertex Cover
— removing the vertex cover constraints gives knapsack problem
— if opt solution to knapsack w/out vertex cover constraints is <v, then stop

> |n particular, want to remove some hard constraints
— thenyou get a problem we can solve efficiently
— reduce your exponential search to just satisfying those
— only be exponential in distance from easy instances

