
CSE 417
Branch & Bound (pt 3)
”Fast Enough” Exponential Time

> HW8 due Friday
– model the problem of rounding table entries as max flow

> you are given a library that solves basic max flow
– don’t forget what you learned in HW7

> the provided library is just implementing an algorithm you know

Reminders

> Complexity theory: P & NP
– answer can be found vs checked in polynomial time

> NP-completeness
– hardest problems in NP

> Reductions
– reducing from Y to X proves Y ≤ X

> if you can solve X, then you can solve Y
– X is NP-hard if every Y in NP is Y ≤ X

Review of previous lectures

Coping with NP-completeness:

1. Your problem could lie in a special case that is easy
– example: small vertex covers (or large independent sets)
– example: independent set on trees

2. Look for approximate solutions
– example: Knapsack with rounding

3. Look for “fast enough” exponential time algorithms

Review of previous lectures
more generally, only pay for
distance from easy cases

3. Look for “fast enough” exponential time algorithms

– “For every polynomial time algorithm you have,
there’s an exponential time algorithm I would rather run.”

— Alan Perlis

– In practice, it doesn’t really matter if the algorithm scales exponentially
as long as it finishes in a reasonable amount of time
on the data you need to run it on.
> we also have more computing power now than ever before

– Applies to both decision problems and optimization

Next two lectures

> Search Trees
> 3-SAT
> Knapsack + Vertex Cover
> Register Allocation
> Branch & Bound

Outline for Today

> Vertex Cover algorithm showed
an example of a search tree
– tree of recursive calls
– VertexCover(G, k) calls

VertexCover(G – {u}, k – 1) and
VertexCover(G – {v}, k – 1) for some edge (u,v)

> Each node corresponds to a set of choices about what
sort of solution to look for
– each node looks G – {u1, u2, ..., uk}
– removed those are the ones are going to use (so don’t need cover)

Search Trees

> Vertex Cover algorithm showed
an example of a search tree
– easily implemented recursively

> Each node corresponds to a set of choices about what sort of
solution to look for

> Running time is O(#nodes · time per node)
– #nodes is exponential in the worst case
– key point: work hardest on reducing #nodes not time per node

Search Trees

> Search Trees
> 3-SAT
> Knapsack + Vertex Cover
> Register Allocation
> Branch & Bound

Outline for Today

> SAT: Given a logical formula on variables x1, ..., xn using only and,
or, & not, determine whether there is a setting of the variables
to T/F so that the formula evaluates to T

> 3-SAT: As above, but formula is of the form “t1 and t2 ... and tm”,
where each ti is of the form “fi1 or fi2 or fi3”,
where each fij is either “xk” or “not xk” for some k
– e.g.: ((not x1) or x2 or x3) and

(x1 or (not x2) or x3) and
((not x1) or (not x2) or (not x3))

Recall: SAT and 3-SAT

> Search tree with nodes for {x1=T/F, ..., xk=T/F}
– root node has empty set {} of assignments
– two children of node with assignments {x1=T/F, ..., xk=T/F} are

> {x1=T/F, ..., xk=T/F} + {xk+1 = T} AND
> {x1=T/F, ..., xk=T/F} + {xk+1 = F}

> #nodes is O(2n)
> time per node is O(m) in leaves

– leaf nodes have T/F value for every variable
– evaluate each clause, see if all are satisfied

Brute Force Algorithm

> Look at individual clause “f1 or f2 or f3” and
consider how it could be satisfied...

> Either have f1 = T or f2 = T or f3 = T
– (or rather, cannot have all three being F)

> Each fi is either xj or not xj,
so setting fi = T is setting xj = T or xj = F

Improved Algorithm

> Look at individual clause “f1 or f2 or f3”
– suppose these correspond to variable xi, xj, and xk

– suppose those are satisfied by setting xi = bi, xj = bj, and xk = bk, resp.

> CanSatisfy(P) iff
CanSatisfy(P, {xi=bi}) or CanSatisfy(P, {xj=bj}) or CanSatisfy(P, {xk=bk})
– one of those must work if F is satisfiable

Improved Algorithm

> CanSatisfy(P) iff
CanSatisfy(P, {xi=bi}) or CanSatisfy(P, {xj=bj}) or CanSatisfy(P, {xk=bk})
– one of those must work if P is satisfiable

> Running time satisfies T(n) = 3 T(n – 1) + O(m)
– solution is O(m 3n)
– that’s actually worse than brute force!

Improved Algorithm

> Improve it with this observation:
we only care about satisfying P with xj = bj if
there is no way to satisfy it with xi = bi

> In other words, if there is no solution where f1 is satisfied,
then we should look for solutions where f2 is T and f1 is F
– no point in considering f1 = T anymore
– we already showed there is no solution with that property

Improved Algorithm

> If there is no solution where f1 is satisfied, then
we should look for solutions where f2 is T and f1 is F
– no point in considering f1 = T anymore

> CanSatisfy(P) iff
CanSatisfy(P, {xi = bi}) or
CanSatisfy(P, {xi = not bi, xj=bj}) or
CanSatisfy(P, {xi = not bi, xj = not bj, xk=bk})

Improved Algorithm

> CanSatisfy(P) iff
CanSatisfy(P, {xi = bi}) or
CanSatisfy(P, {xi = not bi, xj=bj}) or
CanSatisfy(P, {xi = not bi, xj = not bj, xk=bk})

> Running time satisfies: T(n) ≤ T(n-1) + T(n-2) + T(n-3) + O(m)

> Solution is O(m 1.84n)
– not hard to check that this holds

> use fact that ~1.84 is largest root of r3 = r2 + r + 1

Improved Algorithm

> There is a 3-SAT algorithm that runs in O(1.334n) time

> In practice, SAT solvers work surprisingly well
– can solve problems with >10k variables and >1m clauses

> Reduction to 3-SAT lets you use this solver to solve your problem
– note: that does not prove your problem is NP-complete

> need to reduce from 3-SAT to prove that
– (Cook proved every NP problem reduces to 3-SAT

but the reduction is very inefficient)

More Algorithms

> Search Trees
> 3-SAT
> Knapsack + Vertex Cover
> Register Allocation
> Branch & Bound

Outline for Today

> Problem: Given a set of items {(wi, vi)}, a weight limit W, and a
collection of pairs {(i, j)}, find the subset of items with largest
total value subject to the constraints that:
– total weight is under the limit
– for each pair (i, j), either i or j (or both) is included

> HW6 was a special case of Knapsack + Independent Set

Knapsack + Vertex Cover

> Saw a recursive strategy earlier
– efficient if the vertex cover is small
– it may not be here...

> Alternative strategy: hope that opt solutions are often covers
– in HW6, opt solution often did not violate independence constraints
– this strategy will also work well if the vertex cover is small

Knapsack + Vertex Cover

> Recall our algorithm for Vertex Cover:

VertexCover(G, k):

if k > 0:
pick an edge (u,v)
return VertexCover(G – {u}, k-1) ||

VertexCover(G – {v}, k-1)
else:
return true iff G has no edges

Knapsack + Vertex Cover

> Algorithm for Knapsack + Vertex Cover...
– change leaf nodes to solve Knapsack

> all items in the cover are included... let knapsack choose the rest

KVC(G, S):
if G has an edge:

pick an edge (u,v)
return max(KVC(G – {u}, S + {u}),

KVC(G – {v}, S + {v})
else:
return Knapsack(items – S, W – (weight of S))

+ (value of S)

Knapsack + Vertex Cover

> Algorithm for Knapsack + Vertex Cover...
– change leaf nodes to solve Knapsack

> all items in the cover are included... let knapsack choose the rest

> So far, this will search through all possible set covers
– exponentially many: potentially 2m in worst case
– fast if the graph is small

> We can do better if best solutions are usually covers...

Knapsack + Vertex Cover

> We can do better if best solutions are usually covers...

> Try solving knapsack at internal nodes of search tree also
– if knapsack solution is a vertex cover, then no need to recurse further

> that must be the optimal solution
– it is optimal amongst all knapsack solutions
– even those that are not vertex covers

– if knapsack has no solution, then no need to recurse further
> there is no solution

– otherwise, recurse as usual

Knapsack + Vertex Cover

KVC(G, S):
solve knapsack on (items – S) with W – (weight of S)

if there is no solution:
return –infinity (no point searching further)

else if some edge (u,v) is not covered by solution:
return max(KVC(G – {u}, S + {u}),

KVC(G – {v}, S + {v})

else:
return knapsack value + (value of S)

Knapsack + Vertex Cover

> Try solving knapsack at internal nodes of search tree also
– stop recursion if we find a solution or there is no solution

> If knapsack solutions are usually covers,
then this will be much faster
– ideally, we will solve knapsack only once
– (this was the case in HW6)

> If knapsack solutions are usually not covers,
then this will be slower, but not by much
– only a factor of 2 slower in the worst case

Knapsack + Vertex Cover

> Important lessons about exponential time searches...

1. Slow (poly time) work in each node can easily pay for itself
– intuition may suggest you want fast checks in each node

BUT expensive checks often pay for themselves by shrinking tree
– (this comes up frequently in branch & bound...)

2. Try to limit exponential search to hard constraints only
– without VC constraints, last problem was efficiently solvable
– try to only pay exponential time for difficulty of those constraints

Principles

> Search Trees
> 3-SAT
> Knapsack + Vertex Cover
> Register Allocation
> Branch & Bound

Outline for Today

> Problem: Given a graph G and a number k, find an assignment
of colors to nodes such that, for every edge (u,v) in G, u and v are
assigned different colors.

> Properties:
– easy when k = 2

> graph is bipartite iff it is 2-colorable
– NP-complete when k ≥ 3

Graph Coloring

> Given a formula such as

> Need to find a graph that is 3-colorable iff
the formula is satisfiable

3-SAT ≤ 3-Coloring

> Create triangles {N, T, F} and {N, xi, not xi} for each variable xi
– all three nodes in a triable must get different colors
– color of T indicates true and color of F indicates false
– each “xi” and “not xi” node is assigned T or F

> cannot be assigned N color due to triangle

3-SAT ≤ 3-Coloring

N

T F

xi

xi

xj

xj

(triangle for each of x1, x2, ..., xn)

> Represent “x or y” by a triangle:

> Can check that:
– x = y = T means “x or y” = T
– x = y = F means ”x or y” = F
– x = T and y = F (or vice versa)

means “x or y” is arbitrary

> If we force “x or y” = T,
then we must have either x = T or y = T or both

3-SAT ≤ 3-Coloring

y

x

x	or	y

> Force “x or y or z” to be true like this:
– triangle with N/F forces “x or y or z” = T
– that forces at least one of {x, y, z} to be T

> see previous slide

3-SAT ≤ 3-Coloring

y

x

x	or	y

z

x	or	y	or	z

N F

> This is an example of a “gadget” proof
– triangle connected to x and y is an “OR gadget”

> represents SAT “or” operator within the context of coloring

> Similar techniques are used in many other reductions
– depend on careful understanding of details of the problem

> (that’s why we’re not going to study them carefully...)

3-SAT ≤ 3-Coloring

> Next: at an important application of graph coloring in compilers

> A little background first...

Graph Coloring

> Typical processor instructions:
– load from memory to registers
– store from registers to memory
– operations on registers:

> arithmetic
> comparisons
> etc.

Computer Architecture

CPU

memory

registers

> Compilers translates source code
(e.g., Java) to processor instructions

> To do so, it must choose how to assign
local variables to registers
– CPUs have a fixed number (e.g., 32) of registers
– any two variables needed at the same time

should be assigned to different registers
– those not needed can be “spilled” to memory

> i.e., written to memory and later read back
> this has a cost

Register Allocation

CPU

memory

registers

> To do so, it must choose how to assign
local variables to registers
– CPUs have a fixed number (e.g., 32) of registers
– any two variables needed at the same time

should be assigned to different registers

> Model as graph coloring:
– nodes for local variables
– each color indicates a register
– edges between local variables used at the

same time (cannot be in same register)

Register Allocation

CPU

memory

registers

> Can speed up the exponential search considerably...

> Idea: simplify the graph by removing all nodes with <k neighbors
– (neighbors are nodes directly connected to it by edges)

> Any such node can be easily colored no matter what colors are
chosen for the other nodes
– just pick one of the colors not used by any of its neighbors
– since it has <k neighbors, some color is not used

Graph Coloring

> Idea: simplify the graph by removing all nodes with <k neighbors
– any such node can be easily colored no matter the colors of the other nodes
– this can be repeated: removing a node takes away neighbors of other nodes
– sometimes (not always) this solves the problem

> simplifies all the way down to an empty graph

> Rather than doing an exponential search over resulting graph,
we will change the problem slightly
– allow (u,v) to have both u and v assigned the same color

BUT doing so has an associated cost
– (cost relates to expense of moving variables in/out of memory)

Graph Coloring

> Model as variant of graph coloring:
– given weighted graph G, find a coloring of the nodes

minimizing sum of costs on conflicting edges
– (edge (u,v) is conflicting if u and v are assigned same color)

> In particular, we will restrict to colorings produced by the
process described before
– i.e., remove least cost set of edges so that the resulting graph can be colored

simply by repeatedly removing nodes with <k neighbors
– (should still be NP-complete)

Register Allocation
CPU

memory
registers

Color(G, k):
try to solve by repeatedly removing nodes with <k neighbors

if it works:
return 0 (no edges removed, so no cost)

else:
leastCost = infinity
for every edge (u,v) in resulting Graph:
cost = Color(G – (u,v), k) + (cost of (u,v))
leastCost = min(cost, leastCost)

return leastCost

Register Allocation
CPU

memory

registers

> As with Knapsack, can run very quickly when there is a high
likelihood that graph will be colored quickly
– exact algorithm can still be fast if it usually only takes a few edge

removals to get a graph that can be colored
– unlike K+VC example, it mixes approximation with exponential time search

> This idea is commonly used in real compilers
– however, they often only solve it approximately (not exactly)

> sometimes use fixed strategy for which one edge should be removed
> others perform some amount of search

– extremely fast (often roughly linear time) in practice

Register Allocation
CPU

memory

registers

> Search Trees
> 3-SAT
> Knapsack + Vertex Cover
> Register Allocation
> Branch & Bound

Outline for Today

> 3-SAT and graph coloring examples were decision problems
– can stop searching when we find any solution

> For optimization, we need to find the best solution
– one approach: solve decision version + binary search
– usual approach: return the best solution found in subtree

> root of entire tree returns the best overall solution
> example: K+VC, min cost graph coloring

Branch & Bound

> For optimization, we need to find the best solution
– usual approach: return the best solution found in subtree

> Can still stop searching a subtree IF
we can prove that it cannot contain the best solution
– keep track of best value v seen so far (anywhere in the tree)
– stop if we can prove opt in subtree is worse than v

> note: do not have to compute opt in subtree to do this!

> Branch (search tree) &
Bound (eliminate subtree using lower/upper bounds)

Branch & Bound

> Can still stop searching a subtree IF
we can prove that it cannot contain the best solution
– keep track of min value v seen so far (anywhere in the tree)
– stop if we can prove opt in subtree is worse than v

> Bound opt in subtree by removing constraints
– solving the problem without that constraint can only improve solution
– if that is still worse than v, then opt in subtree is worse than v as well

> found opt in a subset of solutions that includes subtree opt

Branch & Bound

> Bound opt in subtree by removing constraints
– solving the problem without that constraint can only improve solution

> Example: Knapsack + Vertex Cover
– removing the vertex cover constraints gives knapsack problem
– if opt solution to knapsack w/out vertex cover constraints is < v, then stop

> In particular, want to remove some hard constraints
– then you get a problem we can solve efficiently
– reduce your exponential search to just satisfying those
– only be exponential in distance from easy instances

Branch & Bound

