CSE 417 Branch \mathcal{E} Bound (pt 3) "Fast Enough" Exponential Time

Reminders

> HW8 due Friday

- model the problem of rounding table entries as max flow
$>$ you are given a library that solves basic max flow
- don't forget what you learned in HW7
> the provided library is just implementing an algorithm you know

Review of previous lectures

> Complexity theory: P \& NP

- answer can be found vs checked in polynomial time
> NP-completeness
- hardest problems in NP
$>$ Reductions
- reducing from Y to X proves $Y \leq X$
$>$ if you can solve X, then you can solve Y
$-X$ is NP-hard if every Y in $N P$ is $Y \leq X$

Review of previous lectures

Coping with NP-completeness:
more generally, only pay for distance from easy cases

1. Your problem could lie in a special case that is easy

- example: small vertex covers (or large independent sets)
- example: independent set on trees

2. Look for approximate solutions

- example: Knapsack with rounding

3. Look for "fast enough" exponential time algorithms

Next two lectures

3. Look for "fast enough" exponential time algorithms

- "For every polynomial time algorithm you have, there's an exponential time algorithm I would rather run."
- Alan Perlis
- In practice, it doesn't really matter if the algorithm scales exponentially as long as it finishes in a reasonable amount of time on the data you need to run it on.
> we also have more computing power now than ever before
- Applies to both decision problems and optimization

Outline for Today

> Search Trees
> 3-SAT
> Knapsack + Vertex Cover
> Register Allocation
$>$ Branch \& Bound

Search Trees

> Vertex Cover algorithm showed an example of a search tree

- tree of recursive calls

- VertexCover(G, k) calls VertexCover(G-\{u\}, k-1) and $\operatorname{VertexCover}(\mathrm{G}-\{\mathrm{v}\}, \mathrm{k}-1)$ for some edge (u, v)
> Each node corresponds to a set of choices about what sort of solution to look for
- each node looks G - \{u $\left.\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}}\right\}$
- removed those are the ones are going to use (so don't need cover)

Search Trees

> Vertex Cover algorithm showed an example of a search tree

- easily implemented recursively

> Each node corresponds to a set of choices about what sort of solution to look for
> Running time is O(\#nodes • time per node)
- \#nodes is exponential in the worst case
- key point: work hardest on reducing \#nodes not time per node

Outline for Today

> Search Trees
> 3-SAT
> Knapsack + Vertex Cover
> Register Allocation
$>$ Branch \& Bound

Recall: SAT and 3-SAT

> SAT: Given a logical formula on variables x_{1}, \ldots, x_{n} using only and, or, \& not, determine whether there is a setting of the variables to T/F so that the formula evaluates to T
> 3-SAT: As above, but formula is of the form " t_{1} and $\mathrm{t}_{2} \ldots$ and t_{m} ", where each t_{i} is of the form "f $\mathrm{f}_{\mathrm{i} 1}$ or $\mathrm{f}_{\mathrm{i} 2}$ or $\mathrm{f}_{\mathrm{i} 3}$ ", where each $f_{i j}$ is either " x_{k} " or "not x_{k} " for some k

- e.g.: ((not x_{1}) or x_{2} or $\left.x_{3}\right)$ and (x_{1} or $\left(\operatorname{not} x_{2}\right)$ or $\left.x_{3}\right)$ and $\left(\left(\operatorname{not} x_{1}\right) \operatorname{or}\left(\operatorname{not} x_{2}\right) \operatorname{or}\left(\operatorname{not} x_{3}\right)\right)$

Brute Force Algorithm

$>$ Search tree with nodes for $\left\{x_{1}=T / F, \ldots, x_{k}=T / F\right\}$

- root node has empty set \{\} of assignments
- two children of node with assignments $\left\{x_{1}=T / F, \ldots, x_{k}=T / F\right\}$ are

$$
\begin{aligned}
& >\left\{x_{1}=T / F, \ldots, x_{k}=T / F\right\}+\left\{\mathbf{x}_{k+1}=\mathrm{T}\right\} \text { AND } \\
& >\left\{x_{1}=T / F, \ldots, x_{k}=T / F\right\}+\left\{x_{k+1}=F\right\}
\end{aligned}
$$

$>$ \#nodes is $\mathrm{O}\left(2^{n}\right)$
$>$ time per node is $\mathrm{O}(\mathrm{m})$ in leaves

- leaf nodes have T/F value for every variable
- evaluate each clause, see if all are satisfied

Improved Algorithm

> Look at individual clause " f_{1} or f_{2} or f_{3} " and consider how it could be satisfied...
$>$ Either have $f_{1}=T$ or $f_{2}=T$ or $f_{3}=T$

- (or rather, cannot have all three being F)
$>$ Each f_{i} is either x_{j} or not x_{j}, so setting $f_{i}=T$ is setting $x_{j}=T$ or $x_{j}=F$

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
$$

Improved Algorithm

> Look at individual clause "f f_{1} or f_{2} or f_{3} "

- suppose these correspond to variable x_{i}, x_{j}, and x_{k}
- suppose those are satisfied by setting $x_{i}=b_{i}, x_{j}=b_{j}$, and $x_{k}=b_{k}$, resp.
$>$ CanSatisfy(P) iff
CanSatisfy(P, $\left\{\mathrm{x}_{\mathrm{i}}=\mathrm{b}_{\mathrm{i}}\right\}$) or CanSatisfy($\left(\mathrm{P},\left\{\mathrm{X}_{\mathrm{j}}=\mathrm{b}_{\mathrm{j}}\right\}\right.$) or CanSatisfy($\mathrm{P},\left\{\mathrm{X}_{\mathrm{k}}=\mathrm{b}_{\mathrm{k}}\right\}$)
- one of those must work if F is satisfiable

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
$$

Improved Algorithm

$>$ CanSatisfy(P) iff
CanSatisfy $\left(P,\left\{\mathrm{X}_{\mathrm{i}}=\mathrm{b}_{\mathrm{i}}\right\}\right)$ or CanSatisfy $\left(\mathrm{P},\left\{\mathrm{X}_{\mathrm{j}}=\mathrm{b}_{\mathrm{j}}\right\}\right)$ or CanSatisfy $\left(\mathrm{P},\left\{\mathrm{X}_{\mathrm{k}}=\mathrm{b}_{\mathrm{k}}\right\}\right)$

- one of those must work if P is satisfiable
$>$ Running time satisfies $T(n)=3 T(n-1)+O(m)$
- solution is O (m 3^{n})
- that's actually worse than brute force!

Improved Algorithm

> Improve it with this observation: we only care about satisfying P with $x_{j}=b_{j}$ if there is no way to satisfy it with $x_{i}=b_{i}$
> In other words, if there is no solution where f_{1} is satisfied, then we should look for solutions where f_{2} is T and f_{1} is F

- no point in considering $f_{1}=T$ anymore
- we already showed there is no solution with that property

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{l}
\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
\end{array}\right.
$$

Improved Algorithm

> If there is no solution where f_{1} is satisfied, then we should look for solutions where f_{2} is T and f_{1} is F

- no point in considering $f_{1}=T$ anymore
> CanSatisfy(P) iff
CanSatisfy(P, $\left\{x_{i}=b_{i}\right\}$) or
CanSatisfy (P, $\left\{\mathrm{x}_{\mathrm{i}}=\right.$ not $\left.\mathrm{b}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}=\mathrm{b}_{\mathrm{j}}\right\}$) or
CanSatisfy (P, $\left\{x_{i}=\right.$ not $b_{i}, x_{j}=$ not $\left.\left.b_{j}, x_{k}=b_{k}\right\}\right)$

Improved Algorithm

> CanSatisfy(P) iff
CanSatisfy (P, $\left\{x_{i}=b_{i}\right\}$) or
CanSatisfy ($\mathrm{P},\left\{\mathrm{x}_{\mathrm{i}}=\right.$ not $\left.\mathrm{b}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}=\mathrm{b}_{\mathrm{j}}\right\}$) or
CanSatisfy(P, $\left\{x_{i}=\right.$ not $b_{i}, x_{j}=$ not $\left.b_{j}, x_{k}=b_{k}\right\}$)
$>$ Running time satisfies: $T(n) \leq T(n-1)+T(n-2)+T(n-3)+O(m)$
> Solution is O(m 1.84n)

- not hard to check that this holds
$>$ use fact that ~ 1.84 is largest root of $r^{3}=r^{2}+r+1$

More Algorithms

> There is a 3-SAT algorithm that runs in $\mathrm{O}\left(1.334^{n}\right)$ time
> In practice, SAT solvers work surprisingly well

- can solve problems with $>10 \mathrm{k}$ variables and $>1 \mathrm{~m}$ clauses
> Reduction to 3-SAT lets you use this solver to solve your problem
- note: that does not prove your problem is NP-complete
> need to reduce from 3-SAT to prove that
- (Cook proved every NP problem reduces to 3-SAT but the reduction is very inefficient)

Outline for Today

> Search Trees
> 3-SAT
> Knapsack + Vertex Cover

> Register Allocation
$>$ Branch \& Bound

Knapsack + Vertex Cover

> Problem: Given a set of items $\left\{\left(\mathrm{w}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)\right\}$, a weight limit W , and a collection of pairs $\{(i, j)\}$, find the subset of items with largest total value subject to the constraints that:

- total weight is under the limit
- for each pair (i, j), either i or j (or both) is included
> HW6 was a special case of Knapsack + Independent Set

Knapsack + Vertex Cover

> Saw a recursive strategy earlier

- efficient if the vertex cover is small
- it may not be here...
> Alternative strategy: hope that opt solutions are often covers
- in HW6, opt solution often did not violate independence constraints
- this strategy will also work well if the vertex cover is small

Knapsack + Vertex Cover

> Recall our algorithm for Vertex Cover:

```
VertexCover(G, k):
    if k > 0:
        pick an edge (u,v)
        return VertexCover(G - {u}, k-1) ||
        VertexCover(G - {v}, k-1)
    else:
        return true iff G has no edges
```


Knapsack + Vertex Cover

> Algorithm for Knapsack + Vertex Cover...

- change leaf nodes to solve Knapsack
> all items in the cover are included... let knapsack choose the rest
KVC(G, S):
if G has an edge:
pick an edge (u, v)
return $\max (\operatorname{KVC}(G-\{u\}, S+\{u\})$,

```
                        KVC(G - {v}, S + {v})
```

else:
return Knapsack(items - S, W - (weight of S))

+ (value of S)

Knapsack + Vertex Cover

> Algorithm for Knapsack + Vertex Cover...

- change leaf nodes to solve Knapsack
> all items in the cover are included... let knapsack choose the rest
> So far, this will search through all possible set covers
- exponentially many: potentially 2^{m} in worst case
- fast if the graph is small
> We can do better if best solutions are usually covers...

Knapsack + Vertex Cover

> We can do better if best solutions are usually covers...
> Try solving knapsack at internal nodes of search tree also

- if knapsack solution is a vertex cover, then no need to recurse further
> that must be the optimal solution
- it is optimal amongst all knapsack solutions
- even those that are not vertex covers
- if knapsack has no solution, then no need to recurse further
$>$ there is no solution
- otherwise, recurse as usual

Knapsack + Vertex Cover

```
KVC(G, S):
    solve knapsack on (items - S) with W - (weight of S)
    if there is no solution:
        return -infinity (no point searching further)
    else if some edge (u,v) is not covered by solution:
        return max(KVC(G - {u}, S + {u}),
                        KVC(G - {v},S + {v})
    else:
        return knapsack value + (value of S)

\section*{Knapsack + Vertex Cover}

> Try solving knapsack at internal nodes of search tree also
- stop recursion if we find a solution or there is no solution
> If knapsack solutions are usually covers, then this will be much faster
- ideally, we will solve knapsack only once
- (this was the case in HW6)
> If knapsack solutions are usually not covers, then this will be slower, but not by much
- only a factor of 2 slower in the worst case

\section*{Principles}
> Important lessons about exponential time searches...
1. Slow (poly time) work in each node can easily pay for itself
- intuition may suggest you want fast checks in each node

BUT expensive checks often pay for themselves by shrinking tree
- (this comes up frequently in branch \& bound...)
2. Try to limit exponential search to hard constraints only
- without VC constraints, last problem was efficiently solvable
- try to only pay exponential time for difficulty of those constraints

\section*{Outline for Today}
> Search Trees
> 3-SAT
> Knapsack + Vertex Cover
> Register Allocation

> Branch \& Bound

\section*{Graph Coloring}
> Problem: Given a graph \(G\) and a number \(k\), find an assignment of colors to nodes such that, for every edge ( \(u, v\) ) in \(G, u\) and \(v\) are assigned different colors.
> Properties:
- easy when \(\mathrm{k}=2\)
> graph is bipartite iff it is 2-colorable
- NP-complete when \(\mathrm{k} \geq 3\)

\section*{3-SAT \(\leq\) 3-Coloring}
> Given a formula such as
\[
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
\]
\(>\) Need to find a graph that is 3-colorable iff the formula is satisfiable

\section*{3-SAT \(\leq 3\)-Coloring}
\(>\) Create triangles \(\{N, T, F\}\) and \(\left\{N, x_{i}\right.\), not \(\left.x_{i}\right\}\) for each variable \(x i\)
- all three nodes in a triable must get different colors
- color of T indicates true and color of F indicates false
- each " \(x_{i}\) " and "not \(x_{i}\) " node is assigned \(T\) or \(F\)
\(>\) cannot be assigned \(N\) color due to triangle

(triangle for each of \(x_{1}, x_{2}, \ldots, x_{n}\) )


\section*{3-SAT \(\leq 3\)-Coloring}
> Represent "x or y" by a triangle:
> Can check that:
- \(x=y=\) T means "x or \(y\) " \(=T\)
\(-x=y=F\) means "x or \(y\) " \(=F\)
\(-x=T\) and \(y=F\) (or vice versa) means "x or \(y\) " is arbitrary

> If we force "x or \(y\) " = T, then we must have either \(\mathrm{x}=\mathrm{T}\) or \(\mathrm{y}=\mathrm{T}\) or both

\section*{3-SAT \(\leq 3\)-Coloring}
> Force "x or \(y\) or \(z\) " to be true like this:
- triangle with N/F forces "x or y or z" = T
- that forces at least one of \(\{x, y, z\}\) to be \(T\)
> see previous slide


\section*{W}

\section*{3-SAT \(\leq\) 3-Coloring}
> This is an example of a "gadget" proof
- triangle connected to \(x\) and \(y\) is an "OR gadget"
> represents SAT "or" operator within the context of coloring
> Similar techniques are used in many other reductions
- depend on careful understanding of details of the problem
> (that's why we're not going to study them carefully...)

\section*{Graph Coloring}
> Next: at an important application of graph coloring in compilers
> A little background first...

\section*{Computer Architecture}
> Typical processor instructions:
- load from memory to registers
- store from registers to memory
- operations on registers:
> arithmetic
> comparisons
\(>\) etc.


W

\section*{Register Allocation}
> Compilers translates source code (e.g., Java) to processor instructions
> To do so, it must choose how to assign local variables to registers
- CPUs have a fixed number (e.g., 32) of registers
- any two variables needed at the same time
 should be assigned to different registers
- those not needed can be "spilled" to memory
> i.e., written to memory and later read back
\(>\) this has a cost

\section*{Register Allocation}
> To do so, it must choose how to assign local variables to registers
- CPUs have a fixed number (e.g., 32) of registers
- any two variables needed at the same time should be assigned to different registers

> Model as graph coloring:


\section*{Graph Coloring}
> Can speed up the exponential search considerably...
> Idea: simplify the graph by removing all nodes with \(<\mathrm{k}\) neighbors
- (neighbors are nodes directly connected to it by edges)
> Any such node can be easily colored no matter what colors are chosen for the other nodes
- just pick one of the colors not used by any of its neighbors
- since it has <k neighbors, some color is not used

\section*{Graph Coloring}
> Idea: simplify the graph by removing all nodes with <k neighbors
- any such node can be easily colored no matter the colors of the other nodes
- this can be repeated: removing a node takes away neighbors of other nodes
- sometimes (not always) this solves the problem
> simplifies all the way down to an empty graph
> Rather than doing an exponential search over resulting graph, we will change the problem slightly
- allow ( \(u, v\) ) to have both \(u\) and \(v\) assigned the same color BUT doing so has an associated cost
- (cost relates to expense of moving variables in/out of memory)

\section*{Register Allocation}

> Model as variant of graph coloring:
- given weighted graph G, find a coloring of the nodes minimizing sum of costs on conflicting edges
- (edge \((u, v)\) is conflicting if \(u\) and \(v\) are assigned same color)
> In particular, we will restrict to colorings produced by the process described before
- i.e., remove least cost set of edges so that the resulting graph can be colored simply by repeatedly removing nodes with <k neighbors
- (should still be NP-complete)

\section*{Register Allocation}
```

Color(G, k):
try to solve by repeatedly removing nodes with <k neighbors
if it works:
return 0 (no edges removed, so no cost)
else:
leastCost = infinity
for every edge (u,v) in resulting Graph:
cost = Color(G - (u,v), k) + (cost of (u,v))
leastCost = min(cost, leastCost)
return leastCost

Register Allocation

> As with Knapsack, can run very quickly when there is a high memory likelihood that graph will be colored quickly

- exact algorithm can still be fast if it usually only takes a few edge removals to get a graph that can be colored
- unlike K+VC example, it mixes approximation with exponential time search
> This idea is commonly used in real compilers
- however, they often only solve it approximately (not exactly)
> sometimes use fixed strategy for which one edge should be removed
$>$ others perform some amount of search
- extremely fast (often roughly linear time) in practice

Outline for Today

> Search Trees
> 3-SAT
> Knapsack + Vertex Cover
> Register Allocation
$>$ Branch \& Bound

Branch \& Bound

> 3-SAT and graph coloring examples were decision problems

- can stop searching when we find any solution
> For optimization, we need to find the best solution
- one approach: solve decision version + binary search
- usual approach: return the best solution found in subtree
$>$ root of entire tree returns the best overall solution
> example: $\mathrm{K}+\mathrm{VC}$, min cost graph coloring

Branch \& Bound

$>$ For optimization, we need to find the best solution

- usual approach: return the best solution found in subtree
> Can still stop searching a subtree IF we can prove that it cannot contain the best solution
- keep track of best value v seen so far (anywhere in the tree)
- stop if we can prove opt in subtree is worse than v
> note: do not have to compute opt in subtree to do this!
> Branch (search tree) \& Bound (eliminate subtree using lower/upper bounds)

Branch \& Bound

> Can still stop searching a subtree IF we can prove that it cannot contain the best solution

- keep track of min value v seen so far (anywhere in the tree)
- stop if we can prove opt in subtree is worse than v
> Bound opt in subtree by removing constraints
- solving the problem without that constraint can only improve solution
- if that is still worse than v, then opt in subtree is worse than v as well
$>$ found opt in a subset of solutions that includes subtree opt

Branch \& Bound

> Bound opt in subtree by removing constraints

- solving the problem without that constraint can only improve solution
> Example: Knapsack + Vertex Cover
- removing the vertex cover constraints gives knapsack problem
- if opt solution to knapsack w/out vertex cover constraints is < v, then stop
> In particular, want to remove some hard constraints
- then you get a problem we can solve efficiently
- reduce your exponential search to just satisfying those
- only be exponential in distance from easy instances

