CSE 417 Branch & Bound (pt 2) Coping with NP-Completeness

UNIVERSITY of WASHINGTON

Reminders

> HW8 due Friday

- network flow coding
- model the problem of rounding table entries as max flow
 you are given a library that solves basic max flow

Review of last lecture

- > Complexity theory: P & NP
 - answer can be found vs checked in polynomial time
- > NP-completeness
 - hardest problems in NP
 - solvable iff P = NP
- > Reductions
 - reducing from Y to X proves $Y \le X$
 - > if you can solve X, then you can solve Y
 - X is NP-hard if every Y in NP is $Y \le X$

NP-Compete Problems

> "Easiest" NP-complete problems (reduce <u>from</u> these):

Packing	independent set		
Covering	vertex cover		
Constraint Satisfaction	3-SAT		
Sequencing	Hamiltonian cycle		
Partitioning	3D matching		
Numerical	partition		

Outline for Today

> More Reductions

- > Coping with NP-Completeness
- > Small Vertex Covers
- > Independent Set on Trees
- > Approximate Knapsack

More Reductions...

> We have not yet proven that all of these are NP-hard

- assumed (3-)SAT is NP-hard (Cook-Levin Theorem)
- − showed Vertex Cover \equiv_P Independent Set
- > Still need to show:
 - 3-SAT \leq Independent Set
 - 3-SAT ≤ Hamiltonian Cycle (or Vertex Cover ≤ Hamiltonian Cycle)
 - 3-SAT \leq 3D matching
 - 3-SAT \leq Subset Sum / Partition

> We'll just do a couple... (Textbook has more.)

3-SAT ≤_P Independent Set

> Recall: formula is an **and** of m clauses, where each clause is an **or** of three literals, where each literal is of the form "x_k" or "not x_k".

$$\Phi = \left(\begin{array}{cccc} \overline{x_1} & \vee & x_2 & \vee & x_3 \end{array} \right) \land \left(\begin{array}{cccc} x_1 & \vee & \overline{x_2} & \vee & x_3 \end{array} \right) \land \left(\begin{array}{cccc} \overline{x_1} & \vee & x_2 & \vee & x_4 \end{array} \right)$$

> Example: variables x, y, z and 3 clauses - \wedge = and, \vee = or

3-SAT ≤_P Independent Set

- > Reduce to Independent Set
- Idea: get independent set to choose the literals that are true
 must set constraints so that it is possible for those literals to all be true

$$\Phi = \left(\overline{x_1} \lor x_2 \lor x_3\right) \land \left(x_1 \lor \overline{x_2} \lor x_3\right) \land \left(\overline{x_1} \lor x_2 \lor x_4\right)$$

3-SAT ≤_P Independent Set

- > Reduction:
 - create a graph with nodes for every literal of every clause (3m total)
 - connect every x_i and not x_i by an edge
 - look for an independent set of size exactly m

3-SAT ≤_P Subset Sum

- > Reduce to Subset Sum
- > Idea:
 - want subset sum to choose either x_i or not x_i
 - want every clause to have \geq 1 literal chosen

3-SAT ≤_P Subset Sum

> Idea:

- want subset sum to choose either x_i or not x_i
- want every clause to have \geq 1 literal chosen

> Reduction:

- numbers have 2k + 2m digits
 - > use 2 instead of 1 to ensure no carries!
- first 2k digits have 1s to indicate variable used
 - > corresponding W digit means either x_i or not x_i used
- last 2m digits indicate use in a clause
 - > dummy rows let it get from 1-3 in clause to sum of 4

	×	У	Z	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	
x	1	0	0	0	1	0	
¬ X	1	0	0	1	0	1	
У	0	1	0	1	0	0	
¬ y	0	1	0	0	1	1	
Z	0	0	1	1	1	0	
¬ Z	0	0	1	0	0	1	
ſ	0	0	0	1	0	0	
	0	0	0	2	0	0	
	0	0	0	0	1	0	
Ì	0	0	0	0	2	0	
	0	0	0	0	0	1	
	0	0	0	0	0	2	
W	1	1	1	4	4	4	

Outline for Today

- > More Reductions
- > Coping with NP-Completeness (
- > Small Vertex Covers
- > Independent Set on Trees
- > Approximate Knapsack

Coping with NP-Completeness

- 1. Your problem could lie in a special case that is easy
 - (alternatively, reduce the special case to the general case to prove it's NP-hard)
- 2. Look for approximate solutions
 - work well in worst-case or just on your data
 - > (how do you know they work well if you can't solve it?)
- 3. Look for "fast enough" exponential time algorithms
 - next time...

Outline for Today

- > More Reductions
- > Coping with NP-Completeness
- > Small Vertex Covers
- > Independent Set on Trees
- > Approximate Knapsack

Easy Special Cases

- > Some problems are easy if certain inputs are small
- > Example: Knapsack is easy if weight limit (W) is small
 - likewise for subset sum and partition
 - likewise for any problem with a pseudo-polynomial time algorithm
- > Other inputs being small can help too...
 - next: Vertex Cover is easy if node set size (k) is small

Recall: Vertex Cover

> Vertex Cover: Given graph G and number k, find a subset of k nodes such that every edge is adjacent to at least one of them

S = { 3, 6, 7, 10 } is a vertex cover of size k = 4

Vertex Cover: Brute Force

> Brute Force solution is try every combination of k nodes

- n^k choices
- can check in O(k n) time if this is a solution
 - > no nodes repeated
 - > no edges between chosen nodes
- running time is O(k n^{k+1})

Vertex Cover: Brute Force

- > Brute Force solution is try every combination of k nodes
 - running time is $O(k n^{k+1}) = O(k 2^{(k+1) \lg n})$
- > Would like to improve this to, e.g., O(n 2^k)
 - exponential part depends only on k
 - time increases proportionally with n for any value of k
- > Can make a real improvement...
- > Example: n = 1,000 and k = 10
 - k n^{k+1} = 10³⁴
 - $2^k n = 10^7$

> Proposition: Let (u,v) be an edge of G. Then G has a vertex cover of size k iff G – {u} or G – {v} has a vertex cover of size k – 1

W

- > Notation: graph G {u}...
 - has all edges of G except u
 - has all edges of G except those to/from u

- > Proposition: Let (u,v) be an edge of G. Then G has a vertex cover of size k iff G – {u} or G – {v} has a vertex cover of size k – 1
- > Proof (\Rightarrow):
 - Let S be a vertex cover of G of size k
 - S must include either u or v
 - > assume S includes u (without loss of generality)
 - S {u} covers every edge except possibly those adjacent to u
 - $S \{u\}$ covers every edge of $G \{u\}$

- > Proposition: Let (u,v) be an edge of G. Then G has a vertex cover of size k iff G – {u} or G – {v} has a vertex cover of size k – 1
- > Proof (⇐):
 - Let S be a vertex cover of G $\{u\}$ of size k 1
 - only edges of G not covered by S are (potentially) those adjacent to u
 - so S + {u} is a vertex cover of G of size k

> Proposition: Let (u,v) be an edge of G. Then G has a vertex cover of size k iff G – {u} or G – {v} has a vertex cover of size k – 1

```
VertexCover(G, k):
 if k > 0:
     pick an edge (u,v)
     return VertexCover(G - {u}, k-1) || VertexCover(G - {v}, k-1)
 else:
     return true iff G has no edges
```

if k > 0:

pick an edge (u,v)

return VertexCover(G - {u}, k-1) || VertexCover(G - {v}, k-1)

- > Running time is O(2^k (n+m))
 - takes O(n + m) time to construct G $\{u\}$ and G $\{v\}$

```
VertexCover(G, k):
 if k > 0:
     pick an edge (u, v)
     return VertexCover(G - {u}, k-1) || VertexCover(G - {v}, k-1)
 else:
     return true iff G has no edges
```


- > Running time is O(2^k (n+m))
 - takes O(n + m) time to construct G $\{u\}$ and G $\{v\}$
- > Easily improved to O(2^k n k):
 - reject any instance with m > nk
 - > at most n edges are removed in each recursive call
 - > if m > nk, then we cannot end up with 0 edges after k recursive calls
 - − with $m \le nk$, running time is now O(2^k nk)

Coping with NP-Completeness

- > Some problems are easy if certain inputs are small
 - (these cases are studied in "parameterized complexity")
- > Example: Knapsack is easy if weight limit (W) is small
- > Example: Vertex Cover is easy if node set size (k) is small
 - running time is O(poly(n) 2^k)
 - same approach works for large independent sets
 - > recall: S is a vertex cover iff V S is independent

Foreword: Tree Width

- > Some problems are easy if certain inputs are small
 - (these cases are studied in "parameterized complexity")
- > Example: Knapsack is easy if weight limit (W) is small
- > Example: Vertex Cover is easy if node set size (k) is small
- > Example: many problems on graphs are easy if "tree width" is small
 - intuition: problems on trees are easy (dynamic programming)
 - tree width measures how "tree-like" a graph is
 - will discuss more later... (if time)

Outline for Today

- > More Reductions
- > Coping with NP-Completeness
- > Small Vertex Covers
- > Independent Set on Trees 🤇 🧫

> Approximate Knapsack

Recall: Independent Set

> Independent Set: Given graph G and number k, find a subset of k nodes such that no two are connected by an edge

Independent Set on Trees

- > Apply dynamic programming...
 - optimal solution on tree rooted at t = larger of optimal solution with t excluded
 - (optimal solution to which t can be legally added) + 1
 - optimal solution with t excluded =
 - (opt solution on x) + (opt solution on y) + (opt solution on z)
 - > no problem from edges (t,x), (t,y), (t,z) since t is not included
 - optimal solution with t included =
 - (opt solution on x with x excluded) +
 - (opt solution on y with y excluded) +
 - (opt solution on z with z excluded)
 - > no problem from edges (t,x), (t,y), (t,z) since x, y, z not included

Independent Set on Trees

> Apply dynamic programming...

 optimal solution on tree rooted at t = larger of optimal solution with t excluded (optimal solution to which t can be legally added) + 1

- solve 2n problems: one with node included, with with node excluded
- takes O(n) time all together
- > Can be generalized to included weights on nodes
 - as usual, problems on trees are easy with dynamic programming

Special Types of Graphs

- > Trees (have seen)
- > Bipartite graphs (have seen)
- > Planar Graphs (see textbook)
- > Chordal Graphs
- > Graphs of bounded tree-width (more later...)

some NP-complete problems become easy for each type...

Outline for Today

- > More Reductions
- > Coping with NP-Completeness
- > Small Vertex Covers
- > Independent Set on Trees
- > Approximate Knapsack

Coping with NP-Completeness

- 1. Your problem could lie in a special case that is easy
 - saw those above...
- 2. Look for approximate solutions
 - now...
- 3. Look for "fast enough" exponential time algorithms
 - next time...

- > Large sub-field of algorithms
 - like Randomized Algorithms, it is a full course on its own
- > For now, we will just look at one example...

- > Knapsack: Given items of the form (w_i, v_i) and a number W, find the largest total value of any subset of total weight at most W
- > Dynamic programming solves this in O(nW) time
 - great if W is small
- > If W is large, we cannot solve it exactly, BUT we can solve it approximately

- > First, need a slightly different algorithm for different version...
- > Knapsack: Given items of the form (w_i, v_i) and a number W, find the largest total value of any subset of total weight at most W
- > Knapsack 2: Given items of the form (w_i, v_i) and a number V, find the smallest total weight of any subset of total value at least V
 - can still solve first version with this (binary search on V)
 - more useful here: want to approximate values not weights

- > Knapsack 2: Given items of the form (w_i, v_i) and a number V, find the smallest total weight of any subset of total value at least V
- > Still solvable by dynamic programming
 - optimal solution on 1 .. n with V = minimum of optimal solution on 1 .. n-1 with V and (optimal solution on 1 .. n-1 with V - v_n) + w_n
 - running time is $O(nV) = O(n^2 (max v_i))$

- > Knapsack 2: Given items of the form (w_i, v_i) and a number V, find the smallest total weight of any subset of total value at least V
- > Still solvable by dynamic programming
 - table also lets you answer the usual version of knapsack
 - running time is $O(nV) = O(n^2 (max v_i))$
 - use this version if V << W

- > Knapsack 2: Given items of the form (w_i, v_i) and a number V, find the smallest total weight of any subset of total value at least V
- > Dynamic programming solves this in O(nV) time
 - great if V is small
- > If W is large, we cannot solve it exactly, BUT we can solve it approximately...

- > If W is large, we cannot solve it exactly, BUT we can solve it approximately
- > Idea: round the values (up) to multiples of T
 - replace value v by ceil(v / T) T
 - result is between v and v + T
- > Can solve in time O(n (V/T)) after dividing weights by T
 - correct since all values are multiples of T

- > Would like to get a (1 + ε) approximation
 - where ϵ can be chosen close to 0
 - e.g. ϵ = 0.05 to get within 5% of correct solution
- > Will do so by choosing T = ϵ (max v_i) / n
 - the smaller ϵ is, the less rounding we do

- > Choose T = ϵ (max v_i) / n
- > **Proposition**: If subset U is optimal on rounded problem, then for any subset V on original problem, sum of values in $V \le (1 + \varepsilon)$ (sum of values in U)
 - sum of values in V
 ≤ sum of rounded values in V
 ≤ sum of rounded values in U
 ≤ sum of values in U + nT
 ≤ (1 + ε) (sum of values in U)

since we round up since U was optimal

 $max v_i \leq sum of values in U$

- > **Proposition**: If subset U is optimal on rounded problem, then for any subset V on original problem, sum of values in $V \le (1 + \varepsilon)$ (sum of values in U)
- > Our answer is within a factor of $(1 + \varepsilon)$ of the true max value
 - take V to be the true optimum above
- > Running time is $O(n^2 (max rounded v_i)) = O(n^3 / \epsilon)$
 - recall T = ϵ (max v_i) / n
 - since rounded max $v_i = ceil(max v_i / T) \le ceil(n / \epsilon)$

Pseudo-Polynomial Time Algorithms (out of scope)

> We have shown the following for Knapsack:

- for any ε > 0, there is an algorithm for approximately solving Knapsack, within a factor of 1 + ε, in time polynomial in n and 1/ε
- > Such a result is called an "FPTAS"
 - a fully polynomial-time approximation scheme
- > Theorem: Almost any optimization problem with an FPTAS has a pseudo-polynomial time solution
 - assumes the answer is integer and polynomially bounded
 - choose ϵ small enough that ϵ x (solution) < 1

