CSE 417 Branch \mathcal{E} Bound (pt2) Coping with NP-Completeness

Reminders

> HW8 due Friday

- network flow coding
- model the problem of rounding table entries as max flow
$>$ you are given a library that solves basic max flow

Review of last lecture

> Complexity theory: P \& NP

- answer can be found vs checked in polynomial time
> NP-completeness
- hardest problems in NP
- solvable iff $P=N P$
> Reductions
- reducing from Y to X proves $Y \leq X$ $>$ if you can solve X, then you can solve Y
- X is NP-hard if every Y in $N P$ is $Y \leq X$

NP-Compete Problems

> "Easiest" NP-complete problems (reduce from these):

Packing	independent set
Covering	vertex cover
Constraint Satisfaction	3-SAT
Sequencing	Hamiltonian cycle
Partitioning	3D matching
Numerical	partition

Outline for Today

> More Reductions
> Coping with NP-Completeness
> Small Vertex Covers
> Independent Set on Trees
> Approximate Knapsack

More Reductions...

> We have not yet proven that all of these are NP-hard

- assumed (3-)SAT is NP-hard (Cook-Levin Theorem)
- showed Vertex Cover \equiv_{p} Independent Set
> Still need to show:
- 3-SAT \leq Independent Set
- 3-SAT \leq Hamiltonian Cycle (or Vertex Cover \leq Hamiltonian Cycle)
- 3-SAT \leq 3D matching
- 3-SAT \leq Subset Sum / Partition
> We'll just do a couple... (Textbook has more.)

3-SAT \leq_{p} Independent Set

> Recall: formula is an and of m clauses, where each clause is an or of three literals, where each literal is of the form " x_{k} " or "not x_{k} ".

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
$$

> Example: variables x, y, z and 3 clauses

- \wedge = and, $\vee=$ or

3-SAT \leq_{p} Independent Set

> Reduce to Independent Set
> Idea: get independent set to choose the literals that are true

- must set constraints so that it is possible for those literals to all be true

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{l}
\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
\end{array}\right.
$$

3-SAT \leq_{p} Independent Set

> Reduction:

- create a graph with nodes for every literal of every clause (3m total)
- connect every x_{i} and not x_{i} by an edge
- look for an independent set of size exactly m

3-SAT \leq_{p} Subset Sum

> Reduce to Subset Sum
> Idea:

- want subset sum to choose either x_{i} or not x_{i}
- want every clause to have ≥ 1 literal chosen

3-SAT \leq_{p} Subset Sum

> Idea:

- want subset sum to choose either x_{i} or not x_{i}
- want every clause to have ≥ 1 literal chosen
> Reduction:
- numbers have $2 \mathrm{k}+2 \mathrm{~m}$ digits
$>$ use 2 instead of 1 to ensure no carries!
- first $2 k$ digits have 1 s to indicate variable used
$>$ corresponding W digit means either x_{i} or not x_{i} used
- last 2 m digits indicate use in a clause
> dummy rows let it get from $1-3$ in clause to sum of 4

	x	y	z	C_{1}	C_{2}	C_{3}
x	1	0	0	0	1	0
$\neg x$	1	0	0	1	0	1
y	0	1	0	1	0	0
$\neg \mathrm{y}$	0	1	0	0	1	1
z	0	0	1	1	1	0
$\neg \mathrm{z}$	0	0	1	0	0	1
(0	0	0	1	0	0
	0	0	0	2	0	0
	0	0	0	0	1	0
	0	0	0	0	2	0
	0	0	0	0	0	1
	0	0	0	0	0	2
W	1	1	1	4	4	4

Outline for Today

> More Reductions
> Coping with NP-Completeness

> Small Vertex Covers
> Independent Set on Trees
> Approximate Knapsack

Coping with NP-Completeness

1. Your problem could lie in a special case that is easy

- (alternatively, reduce the special case to the general case to prove it's NP-hard)

2. Look for approximate solutions

- work well in worst-case or just on your data
$>$ (how do you know they work well if you can't solve it?)

3. Look for "fast enough" exponential time algorithms

- next time...

Outline for Today

> More Reductions
> Coping with NP-Completeness
> Small Vertex Covers
> Independent Set on Trees
> Approximate Knapsack

Easy Special Cases

> Some problems are easy if certain inputs are small
> Example: Knapsack is easy if weight limit (W) is small

- likewise for subset sum and partition
- likewise for any problem with a pseudo-polynomial time algorithm
> Other inputs being small can help too...
- next: Vertex Cover is easy if node set size (k) is small

Recall: Vertex Cover

> Vertex Cover: Given graph G and number k , find a subset of k nodes such that every edge is adjacent to at least one of them
$S=\{3,6,7,10\}$ is a vertex cover of size $k=4$

Vertex Cover: Brute Force

$>$ Brute Force solution is try every combination of k nodes

- n^{k} choices
- can check in $O(k n)$ time if this is a solution
> no nodes repeated
> no edges between chosen nodes
- running time is $\mathrm{O}\left(\mathrm{k}^{\mathrm{k}+1}\right)$

```
for (Node n1 : nodes)
    for (Node n2 : nodes)
    for (Node nk in nodes)
// check if {n1, n2, ..., nk} is solution
```


Vertex Cover: Brute Force

> Brute Force solution is try every combination of k nodes

- running time is $O\left(k n^{k+1}\right)=O\left(k 2^{(k+1)} \lg n\right)$
> Would like to improve this to, e.g., O(n 2^{k})
- exponential part depends only on k
- time increases proportionally with n for any value of k
> Can make a real improvement...
> Example: $\mathrm{n}=1,000$ and $\mathrm{k}=10$
$-k n^{k+1}=10^{34}$
$-2^{k} n=10^{7}$

Vertex Cover: Improved

> Proposition: Let (u, v) be an edge of G . Then G has a vertex cover of size k iff $\mathrm{G}-\{\mathrm{u}\}$ or $\mathrm{G}-\{\mathrm{v}\}$ has a vertex cover of size k - 1
> Notation: graph G - \{u\}...

- has all edges of G except u
- has all edges of G except those to/from u

Vertex Cover: Improved

> Proposition: Let (u, v) be an edge of G . Then G has a vertex cover of size k iff $\mathrm{G}-\{\mathrm{u}\}$ or $\mathrm{G}-\{\mathrm{v}\}$ has a vertex cover of size k - 1
$>\operatorname{Proof}(\Rightarrow)$:

- Let S be a vertex cover of G of size k
- S must include either u or v
$>$ assume S includes u (without loss of generality)
- S - \{u\} covers every edge except possibly those adjacent to u
- S - \{u\} covers every edge of $G-\{u\}$

Vertex Cover: Improved

> Proposition: Let (u, v) be an edge of G . Then G has a vertex cover of size k iff $\mathrm{G}-\{\mathrm{u}\}$ or $\mathrm{G}-\{\mathrm{v}\}$ has a vertex cover of size k - 1
$>\operatorname{Proof}(\Leftarrow)$:

- Let S be a vertex cover of $G-\{u\}$ of size $k-1$
- only edges of G not covered by S are (potentially) those adjacent to u
- so $S+\{u\}$ is a vertex cover of G of size k

Vertex Cover: Improved

> Proposition: Let (u, v) be an edge of G . Then G has a vertex cover of size k iff $\mathrm{G}-\{\mathrm{u}\}$ or $\mathrm{G}-\{\mathrm{v}\}$ has a vertex cover of size $\mathrm{k}-1$

VertexCover(G, k):

```
    if k > 0:
```

 pick an edge (u,v)
 return VertexCover(G - \{u\}, k-1) || VertexCover(G - \{v\}, k-1)
 else:
return true iff G has no edges

Vertex Cover: Improved

```
if k > 0:
    pick an edge (u,v)
    return VertexCover(G - {u}, k-1) || VertexCover(G - {v}, k-1)
```


Vertex Cover: Improved

$>$ Running time is $\mathrm{O}\left(2^{\mathrm{k}}(\mathrm{n}+\mathrm{m})\right)$

- takes $O(n+m)$ time to construct $G-\{u\}$ and $G-\{v\}$

VertexCover(G, k):
if $k>0$:
pick an edge (u, v)
return VertexCover(G - \{u\}, k-1) || VertexCover(G - \{v\}, k-1)
else:
return true iff G has no edges

Vertex Cover: Improved

> Running time is $\mathrm{O}\left(2^{\mathrm{k}}(\mathrm{n}+\mathrm{m})\right)$

- takes $O(n+m)$ time to construct $G-\{u\}$ and $G-\{v\}$
> Easily improved to $\mathrm{O}\left(2^{\mathrm{k}} \mathrm{nk}\right)$:
- reject any instance with $m>n k$
$>$ at most n edges are removed in each recursive call
$>$ if $m>n k$, then we cannot end up with 0 edges after k recursive calls
- with $\mathrm{m} \leq \mathrm{nk}$, running time is now $\mathrm{O}\left(2^{\mathrm{k}} \mathrm{nk}\right)$

Coping with NP-Completeness

> Some problems are easy if certain inputs are small

- (these cases are studied in "parameterized complexity")
> Example: Knapsack is easy if weight limit (W) is small
> Example: Vertex Cover is easy if node set size (k) is small
- running time is $\mathrm{O}\left(\right.$ poly(n) $\left.2^{k}\right)$
- same approach works for large independent sets
> recall: S is a vertex cover iff $\mathrm{V}-\mathrm{S}$ is independent

Foreword: Tree Width

> Some problems are easy if certain inputs are small

- (these cases are studied in "parameterized complexity")
> Example: Knapsack is easy if weight limit (W) is small
> Example: Vertex Cover is easy if node set size (k) is small
> Example: many problems on graphs are easy if "tree width" is small
- intuition: problems on trees are easy (dynamic programming)
- tree width measures how "tree-like" a graph is
- will discuss more later... (if time)

Outline for Today

> More Reductions
> Coping with NP-Completeness
> Small Vertex Covers
> Independent Set on Trees
> Approximate Knapsack

Recall: Independent Set

> Independent Set: Given graph G and number k, find a subset of k nodes such that no two are connected by an edge

W

Independent Set on Trees

> Apply dynamic programming...

- optimal solution on tree rooted at $\mathrm{t}=$ larger of
 optimal solution with t excluded
(optimal solution to which t can be legally added) +1
- optimal solution with t excluded =
(opt solution on x) $+($ opt solution on y$)+($ opt solution on z$)$
$>$ no problem from edges $(t, x),(t, y),(t, z)$ since t is not included
- optimal solution with t included $=$
(opt solution on x with x excluded) +
(opt solution on y with y excluded) +
(opt solution on z with z excluded)
> no problem from edges ($(, x)$, (t, y), ($(, z)$ since x, y, z not included

Independent Set on Trees

> Apply dynamic programming...

- optimal solution on tree rooted at $t=$ larger of
 optimal solution with t excluded (optimal solution to which t can be legally added) +1
- solve $2 n$ problems: one with node included, with with node excluded
- takes $O(n)$ time all together
> Can be generalized to included weights on nodes
- as usual, problems on trees are easy with dynamic programming

Special Types of Graphs

> Trees (have seen)
some NP-complete problems become easy for each type...
> Bipartite graphs (have seen)
> Planar Graphs (see textbook)
> Chordal Graphs
> Graphs of bounded tree-width (more later...)

Outline for Today

> More Reductions
> Coping with NP-Completeness
> Small Vertex Covers
> Independent Set on Trees
> Approximate Knapsack

Coping with NP-Completeness

1. Your problem could lie in a special case that is easy

- saw those above...

2. Look for approximate solutions

- now...

3. Look for "fast enough" exponential time algorithms

- next time...

Approximation Algorithms

$>$ Large sub-field of algorithms

- like Randomized Algorithms, it is a full course on its own
> For now, we will just look at one example...

Approximation Algorithms

> Knapsack: Given items of the form $\left(w_{i}, v_{i}\right)$ and a number W, find the largest total value of any subset of total weight at most W
> Dynamic programming solves this in $\mathrm{O}(\mathrm{nW})$ time

- great if W is small
> If W is large, we cannot solve it exactly, BUT we can solve it approximately

Approximation Algorithms

> First, need a slightly different algorithm for different version...
> Knapsack: Given items of the form $\left(w_{i}, v_{i}\right)$ and a number W, find the largest total value of any subset of total weight at most W
> Knapsack 2: Given items of the form ($\mathrm{w}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}$) and a number V, find the smallest total weight of any subset of total value at least V

- can still solve first version with this (binary search on V)
- more useful here: want to approximate values not weights

Approximation Algorithms

> Knapsack 2: Given items of the form $\left(w_{i}, v_{i}\right)$ and a number V , find the smallest total weight of any subset of total value at least V
> Still solvable by dynamic programming

- optimal solution on 1 .. n with $\mathrm{V}=$ minimum of optimal solution on 1 .. $\mathrm{n}-1$ with V and
(optimal solution on 1 .. $n-1$ with $V-V_{n}$) $+w_{n}$
- running time is $O(n V)=O\left(n^{2}\left(\max v_{i}\right)\right)$

Approximation Algorithms

> Knapsack 2: Given items of the form $\left(w_{i}, v_{i}\right)$ and a number V , find the smallest total weight of any subset of total value at least V
> Still solvable by dynamic programming

- table also lets you answer the usual version of knapsack
- running time is $O(n V)=O\left(n^{2}\left(m a x v_{i}\right)\right)$
- use this version if $\mathrm{V} \ll \mathrm{W}$

Approximation Algorithms

> Knapsack 2: Given items of the form $\left(w_{i}, v_{i}\right)$ and a number V , find the smallest total weight of any subset of total value at least V
> Dynamic programming solves this in $\mathrm{O}(\mathrm{nV})$ time

- great if V is small
> If W is large, we cannot solve it exactly, BUT we can solve it approximately...

Approximation Algorithms

$>$ If W is large, we cannot solve it exactly, BUT we can solve it approximately
> Idea: round the values (up) to multiples of T

- replace value v by ceil(v / T) T
- result is between v and $v+T$
$>$ Can solve in time $O(n(V / T))$ after dividing weights by T
- correct since all values are multiples of T

Approximation Algorithms

> Would like to get a $(1+\varepsilon)$ approximation

- where ε can be chosen close to 0
- e.g. $\varepsilon=0.05$ to get within 5\% of correct solution
$>$ Will do so by choosing $T=\varepsilon\left(\max v_{i}\right) / n$
- the smaller ε is, the less rounding we do

Approximation Algorithms

$>$ Choose T= $\varepsilon\left(\max _{\mathrm{i}}\right) / \mathrm{n}$
> Proposition: If subset U is optimal on rounded problem, then for any subset V on original problem, sum of values in $V \leq(1+\varepsilon)$ (sum of values in U)

- sum of values in V
s sum of rounded values in V
s sum of rounded values in U
since we round up
s sum of values in $U+n T$
$\leq(1+\varepsilon)$ (sum of values in U)

Approximation Algorithms

> Proposition: If subset U is optimal on rounded problem, then for any subset V on original problem, sum of values in $V \leq(1+\varepsilon)$ (sum of values in U)
> Our answer is within a factor of $(1+\varepsilon)$ of the true max value

- take V to be the true optimum above
$>$ Running time is $\mathrm{O}\left(\mathrm{n}^{2}\left(\max\right.\right.$ rounded $\left.\left.\mathrm{v}_{\mathrm{i}}\right)\right)=\mathrm{O}\left(\mathrm{n}^{3} / \varepsilon\right)$
- recall $T=\varepsilon\left(\max v_{i}\right) / n$
- since rounded $\max v_{i}=\operatorname{ceil}\left(\max v_{i} / T\right) \leq \operatorname{ceil}(n / \varepsilon)$

Pseudo-Polynomial Time Algorithms (out of scope)

> We have shown the following for Knapsack:

- for any $\varepsilon>0$, there is an algorithm for approximately solving Knapsack, within a factor of $1+\varepsilon$, in time polynomial in n and $1 / \varepsilon$
> Such a result is called an "FPTAS"
- a fully polynomial-time approximation scheme
> Theorem: Almost any optimization problem with an FPTAS has a pseudo-polynomial time solution
- assumes the answer is integer and polynomially bounded
- choose ε small enough that $\varepsilon \times$ (solution) <1

