
CSE 417
Branch & Bound (pt 2)
Coping with NP-Completeness



> HW8 due Friday
– network flow coding
– model the problem of rounding table entries as max flow

> you are given a library that solves basic max flow

Reminders



> Complexity theory: P & NP
– answer can be found vs checked in polynomial time

> NP-completeness
– hardest problems in NP
– solvable iff P = NP

> Reductions
– reducing from Y to X proves Y ≤ X

> if you can solve X, then you can solve Y
– X is NP-hard if every Y in NP is Y ≤ X

Review of last lecture



> “Easiest” NP-complete problems (reduce from these):

NP-Compete Problems

Packing independent	set

Covering vertex	cover

Constraint	Satisfaction 3-SAT

Sequencing Hamiltonian cycle

Partitioning 3D	matching

Numerical partition



> More Reductions
> Coping with NP-Completeness
> Small Vertex Covers
> Independent Set on Trees
> Approximate Knapsack

Outline for Today



> We have not yet proven that all of these are NP-hard
– assumed (3-)SAT is NP-hard (Cook-Levin Theorem)
– showed Vertex Cover ≣P Independent Set

> Still need to show:
– 3-SAT ≤ Independent Set
– 3-SAT ≤ Hamiltonian Cycle (or Vertex Cover ≤ Hamiltonian Cycle)
– 3-SAT ≤ 3D matching
– 3-SAT ≤ Subset Sum / Partition

> We’ll just do a couple...  (Textbook has more.)

More Reductions...



> Recall: formula is an and of m clauses,
where each clause is an or of three literals,
where each literal is of the form “xk“ or “not xk”.

> Example: variables x, y, z and 3 clauses
– ∧ = and, ∨ = or

3-SAT ≤P Independent Set



> Reduce to Independent Set

> Idea: get independent set to choose the literals that are true
– must set constraints so that it is possible for those literals to all be true

3-SAT ≤P Independent Set



> Reduction:
– create a graph with nodes for every literal of every clause (3m total)
– connect every xi and not xi by an edge
– look for an independent set of size exactly m

3-SAT ≤P Independent Set



> Reduce to Subset Sum

> Idea:
– want subset sum to choose either xi or not xi

– want every clause to have ≥ 1 literal chosen

3-SAT ≤P Subset Sum



> Idea:
– want subset sum to choose either xi or not xi

– want every clause to have ≥ 1 literal chosen

> Reduction:
– numbers have 2k + 2m digits

> use 2 instead of 1 to ensure no carries!
– first 2k digits have 1s to indicate variable used

> corresponding W digit means either xi or not xi used
– last 2m digits indicate use in a clause

> dummy rows let it get from 1-3 in clause to sum of 4

3-SAT ≤P Subset Sum



> More Reductions
> Coping with NP-Completeness
> Small Vertex Covers
> Independent Set on Trees
> Approximate Knapsack

Outline for Today



1. Your problem could lie in a special case that is easy
– (alternatively, reduce the special case to the general case to prove it’s NP-hard)

2. Look for approximate solutions
– work well in worst-case or just on your data

> (how do you know they work well if you can’t solve it?)

3. Look for “fast enough” exponential time algorithms
– next time...

Coping with NP-Completeness



> More Reductions
> Coping with NP-Completeness
> Small Vertex Covers
> Independent Set on Trees
> Approximate Knapsack

Outline for Today



> Some problems are easy if certain inputs are small

> Example: Knapsack is easy if weight limit (W) is small
– likewise for subset sum and partition
– likewise for any problem with a pseudo-polynomial time algorithm

> Other inputs being small can help too...
– next: Vertex Cover is easy if node set size (k) is small

Easy Special Cases



> Vertex Cover: Given graph G and number k,
find a subset of k nodes such that every
edge is adjacent to at least one of them

Recall: Vertex Cover



> Brute Force solution is try every combination of k nodes
– nk choices
– can check in O(k n) time if this is a solution

> no nodes repeated
> no edges between chosen nodes

– running time is O(k nk+1)

for (Node n1 : nodes)
for (Node n2 : nodes)

...
for (Node nk in nodes)

// check if {n1, n2, ..., nk} is solution

Vertex Cover: Brute Force



> Brute Force solution is try every combination of k nodes
– running time is O(k nk+1) = O(k 2 (k+1) lg n)

> Would like to improve this to, e.g., O(n 2k)
– exponential part depends only on k
– time increases proportionally with n for any value of k

> Can make a real improvement...
> Example: n = 1,000 and k = 10

– k nk+1 = 1034

– 2k n = 107

Vertex Cover: Brute Force



> Proposition: Let (u,v) be an edge of G. Then G has a vertex cover 
of size k iff G – {u} or G – {v} has a vertex cover of size k – 1

> Notation: graph G – {u}...
– has all edges of G except u
– has all edges of G except those to/from u

Vertex Cover: Improved



> Proposition: Let (u,v) be an edge of G. Then G has a vertex cover 
of size k iff G – {u} or G – {v} has a vertex cover of size k – 1

> Proof (⟹):
– Let S be a vertex cover of G of size k
– S must include either u or v

> assume S includes u (without loss of generality)
– S – {u} covers every edge except possibly those adjacent to u
– S – {u} covers every edge of G – {u}

Vertex Cover: Improved



> Proposition: Let (u,v) be an edge of G. Then G has a vertex cover 
of size k iff G – {u} or G – {v} has a vertex cover of size k – 1

> Proof (⟸):
– Let S be a vertex cover of G – {u} of size k – 1
– only edges of G not covered by S are (potentially) those adjacent to u
– so S + {u} is a vertex cover of G of size k

Vertex Cover: Improved



> Proposition: Let (u,v) be an edge of G. Then G has a vertex cover 
of size k iff G – {u} or G – {v} has a vertex cover of size k – 1

VertexCover(G, k):

if k > 0:
pick an edge (u,v)
return VertexCover(G – {u}, k-1) || VertexCover(G – {v}, k-1)

else:
return true iff G has no edges

Vertex Cover: Improved



if k > 0:
pick an edge (u,v)
return VertexCover(G – {u}, k-1) || VertexCover(G – {v}, k-1)

Vertex Cover: Improved



> Running time is O(2k (n+m))
– takes O(n + m) time to construct G – {u} and G – {v}

VertexCover(G, k):

if k > 0:
pick an edge (u, v)
return VertexCover(G – {u}, k-1) || VertexCover(G – {v}, k-1)

else:
return true iff G has no edges

Vertex Cover: Improved



> Running time is O(2k (n+m))
– takes O(n + m) time to construct G – {u} and G – {v}

> Easily improved to O(2k n k):
– reject any instance with m > nk

> at most n edges are removed in each recursive call
> if m > nk, then we cannot end up with 0 edges after k recursive calls

– with m ≤ nk, running time is now O(2k nk)

Vertex Cover: Improved



> Some problems are easy if certain inputs are small
– (these cases are studied in “parameterized complexity”)

> Example: Knapsack is easy if weight limit (W) is small

> Example: Vertex Cover is easy if node set size (k) is small
– running time is O(poly(n) 2k)
– same approach works for large independent sets

> recall: S is a vertex cover iff V – S is independent

Coping with NP-Completeness



> Some problems are easy if certain inputs are small
– (these cases are studied in “parameterized complexity”)

> Example: Knapsack is easy if weight limit (W) is small

> Example: Vertex Cover is easy if node set size (k) is small

> Example: many problems on graphs are easy if “tree width” is small
– intuition: problems on trees are easy (dynamic programming)
– tree width measures how “tree-like” a graph is
– will discuss more later... (if time)

Foreword: Tree Width



> More Reductions
> Coping with NP-Completeness
> Small Vertex Covers
> Independent Set on Trees
> Approximate Knapsack

Outline for Today



> Independent Set: Given graph G and number k,
find a subset of k nodes such that no two are
connected by an edge

Recall: Independent Set



> Apply dynamic programming...
– optimal solution on tree rooted at t = larger of

optimal solution with t excluded
(optimal solution to which t can be legally added) + 1

– optimal solution with t excluded =
(opt solution on x) + (opt solution on y) + (opt solution on z)

> no problem from edges (t,x), (t,y), (t,z) since t is not included
– optimal solution with t included =

(opt solution on x with x excluded) +
(opt solution on y with y excluded) +
(opt solution on z with z excluded)

> no problem from edges (t,x), (t,y), (t,z) since x, y, z not included

Independent Set on Trees

t

x y z



> Apply dynamic programming...
– optimal solution on tree rooted at t = larger of

optimal solution with t excluded
(optimal solution to which t can be legally added) + 1

– solve 2n problems: one with node included, with with node excluded
– takes O(n) time all together

> Can be generalized to included weights on nodes
– as usual, problems on trees are easy with dynamic programming

Independent Set on Trees

t

x y z



> Trees (have seen)

> Bipartite graphs (have seen)

> Planar Graphs (see textbook)

> Chordal Graphs

> Graphs of bounded tree-width (more later...)

Special Types of Graphs

some NP-complete problems
become easy for each type...



> More Reductions
> Coping with NP-Completeness
> Small Vertex Covers
> Independent Set on Trees
> Approximate Knapsack

Outline for Today



1. Your problem could lie in a special case that is easy
– saw those above...

2. Look for approximate solutions
– now...

3. Look for “fast enough” exponential time algorithms
– next time...

Coping with NP-Completeness



> Large sub-field of algorithms
– like Randomized Algorithms, it is a full course on its own

> For now, we will just look at one example...

Approximation Algorithms



> Knapsack: Given items of the form (wi, vi) and a number W, find 
the largest total value of any subset of total weight at most W

> Dynamic programming solves this in O(nW) time
– great if W is small

> If W is large, we cannot solve it exactly,
BUT we can solve it approximately

Approximation Algorithms



> First, need a slightly different algorithm for different version...

> Knapsack: Given items of the form (wi, vi) and a number W, find 
the largest total value of any subset of total weight at most W

> Knapsack 2: Given items of the form (wi, vi) and a number V, find 
the smallest total weight of any subset of total value at least V
– can still solve first version with this (binary search on V)
– more useful here: want to approximate values not weights

Approximation Algorithms



> Knapsack 2: Given items of the form (wi, vi) and a number V, find 
the smallest total weight of any subset of total value at least V

> Still solvable by dynamic programming
– optimal solution on 1 .. n with V = minimum of

optimal solution on 1 .. n-1 with V and
(optimal solution on 1 .. n-1 with V - vn) + wn

– running time is O(nV) = O(n2 (max vi))

Approximation Algorithms



> Knapsack 2: Given items of the form (wi, vi) and a number V, find 
the smallest total weight of any subset of total value at least V

> Still solvable by dynamic programming
– table also lets you answer the usual version of knapsack
– running time is O(nV) = O(n2 (max vi))
– use this version if V << W

Approximation Algorithms



> Knapsack 2: Given items of the form (wi, vi) and a number V, find 
the smallest total weight of any subset of total value at least V

> Dynamic programming solves this in O(nV) time
– great if V is small

> If W is large, we cannot solve it exactly,
BUT we can solve it approximately...

Approximation Algorithms



> If W is large, we cannot solve it exactly,
BUT we can solve it approximately

> Idea: round the values (up) to multiples of T 
– replace value v by ceil(v / T) T
– result is between v and v + T

> Can solve in time O(n (V/T)) after dividing weights by T
– correct since all values are multiples of T

Approximation Algorithms



> Would like to get a (1 + ε) approximation
– where ε can be chosen close to 0
– e.g. ε = 0.05 to get within 5% of correct solution

> Will do so by choosing T = ε (max vi) / n
– the smaller ε is, the less rounding we do

Approximation Algorithms



> Choose T = ε (max vi) / n

> Proposition: If subset U is optimal on rounded problem,
then for any subset V on original problem,
sum of values in V ≤ (1 + ε) (sum of values in U)

– sum of values in V
≤ sum of rounded values in V since we round up
≤ sum of rounded values in U since U was optimal
≤ sum of values in U + nT
≤ (1 + ε) (sum of values in U) max vi ≤ sum of values in U

Approximation Algorithms



> Proposition: If subset U is optimal on rounded problem,
then for any subset V on original problem,
sum of values in V ≤ (1 + ε) (sum of values in U)

> Our answer is within a factor of (1 + ε) of the true max value
– take V to be the true optimum above

> Running time is O(n2 (max rounded vi)) = O(n3 / ε)
– recall T = ε (max vi) / n
– since rounded max vi = ceil(max vi / T) ≤ ceil(n / ε)

Approximation Algorithms



> We have shown the following for Knapsack:
– for any ε > 0, there is an algorithm for approximately solving Knapsack, 

within a factor of 1 + ε, in time polynomial in n and 1/ε

> Such a result is called an “FPTAS”
– a fully polynomial-time approximation scheme

> Theorem: Almost any optimization problem with an FPTAS has a 
pseudo-polynomial time solution
– assumes the answer is integer and polynomially bounded
– choose ε small enough that ε x (solution) < 1

Pseudo-Polynomial Time Algorithms
(out of scope)


