CSE 417 Branch & Bound (pt 1) NP-Completeness

UNIVERSITY of WASHINGTON

Reminders

> HW7 is due today

> HW8 will be posted shortly

- network flow coding
- model the problem of rounding table entries as max flow
 you are given a library that solves basic max flow

Review of previous topics

> Modeling techniques

- shortest paths (intersection of both network flows and dynamic programming)
- binary search
- network flows (max flow & min cost flow)

> Design techniques

- divide and conquer
- dynamic programming
- branch and bound
 - > applies to problems too hard to solve with the other techniques
 - > (in particular, it applies to NP-complete problems, defined shortly...)

Outline for Today

- > Reductions
- > Some NP-complete Problems

- > **Definition**: P is the set of problems that can be solved in polynomial time by a sufficiently large computer
 - (one with enough memory)

> Theoretical details:

- polynomial time in the number of bits of input
 - > excludes pseudo-polynomial time algorithms
- only decision problems
 - > equivalent to optimization due to binary search
- algorithm must run on a Turing machine
 - > equivalent to usual machines

P: History

- > "Invented" by Jack Edmonds (1965)
 - earlier work often focused on actual running times on real machines
 - Edmonds wanted to explain the significance of his matching algorithm
 - > solved general matching (harder than bipartite matching) in polynomial time
 - > paper was rejected multiple times
- > (Note: von Neumann and others also helped "invent" P)

W

P: Theory vs Practice

> Polynomial time algorithms are typically more useful in practice

- some pseudo-poly and exponential time algorithms are useful (more later...)
- some polynomial algorithms are not useful (e.g., O(n⁸))
- in general, though, it is a good dividing line
- > Need this definition to get a reasonable theory
 - want the following pieces:
 - > linear time is fast
 - > if function g is fast and f, which calls g as a subroutine, is fast if we count calls to g as one operation, then f is fast (*composability*)
 - those two imply polynomial time is fast

NP

- > Definition: NP is the set of problems for which a correct answer can be verified in polynomial time
 - i.e., the problem of checking whether an answer is correct is in P
 - P \subseteq NP but NP is believed to be strictly larger
 - (implies that a correct answer must be polynomial size...
 - > so these are problems with small (polynomial size) proofs of correctness)
- > This is not true of all problems, e.g.:
 - testing equivalence of regular expressions
 - solving (generalized) chess or go
 - > proof of a winning strategy is very large

NP-Completeness

- > Definition: Problem X is <u>NP-hard</u> if *any* problem in NP could be solved in polynomial time if given a function that solves X
- > Shows that X is as hard as any problem in NP
- > **Definition**: Problem X is <u>NP-complete</u> if it is in NP and is NP-hard
- > NP-complete problems are the hardest problems in NP
 - can solve these problems iff P = NP
 - > solving these would solve them all

NP-Completeness

- > Boolean Satisfiability (SAT): given a logical formula on variables x₁, ..., x_n using only **and**, **or**, & **not**, determine whether there is a setting of the variables to T/F so that the formula evaluates to T
 - in NP
 - short proof of correctness: give the T variables and the F variables
- > **Theorem** (Cook–Levin): SAT is NP-complete
 - (see textbook for a proof)

P vs NP

- > Can win \$1,000,000 by proving that $P \neq NP$ (or P = NP)...
- > Proving P = NP would be easier (if it were true)
 - just invent a polynomial time algorithm for *any* NP-complete problem
 - unfortunately, we don't think such an algorithm exists
 - > since so many smart people have been trying hard for decades
- > Proving P \neq NP is deviously difficult...

P vs NP

- > Can win \$1,000,000 by proving that $P \neq NP$ (or P = NP)...
- > Proving P \neq NP is deviously difficult...
 - if P = NP, then we would have a poly time algorithm to find the proof
 - > (finding a proof of certain logical statements is NP-complete)
 - > unfortunately, there would be no proof in that case
 - if P ≠ NP, then we could hope for a "natural proof"
 - > (formalizes the idea of how most would normally try to prove this)
 - > unfortunately, Razborov & Rudich proved that such a proof would actually imply that P = NP
 - most other reasonable ideas for proofs have been ruled out
 - > hard to find an approach that seems workable & hasn't been ruled out

P vs NP

> In mathematics, P vs NP is unsettled

- though most believe they are unequal
- > In physics, $P \neq NP$ is often taken as a physical law
 - (see recent work on black holes etc.)
 - simple version: "this Ising model must take exponential time to cool down because if not you could use it to solve NP-complete problems in poly time"
- > (Actually, nearly all physicists believe BQP, not P, is the set of problems that can be solved physically...

these are problems solvable on quantum computers)

Outline for Today

- > P and NP
- > Reductions (
- > Some NP-complete Problems

Reductions

- > **Definition**: Problem Y is polynomial-time <u>reducible</u> to X, denoted $Y \leq_P X$, if there is a polynomial time algorithm that solves Y assuming a polynomial-time subroutine for solving X.
 - algorithm makes poly(n) calls to the subroutine and does poly(n) other work
- > The algorithm here is called a (Cook) "reduction"
 - show that Y is no harder than X (Y \leq_P X) by giving a reduction from Y to X

Reductions

- > **Definition**: Problem Y is polynomial-time <u>reducible</u> to X, denoted $Y \leq_P X$, if there is a polynomial time algorithm that solves Y assuming a polynomial-time subroutine for solving X.
- > **Re-definition**: X is NP-hard if, for *every* Y in NP, $Y \leq_P X$
 - i.e., X is at least as hard as any problem in NP

Reductions

- > **Definition**: Problem Y is polynomial-time <u>reducible</u> to X, denoted $Y \leq_P X$, if there is a polynomial time algorithm that solves Y assuming a polynomial-time subroutine for solving X.
- > **Warning**: do not confuse the order of X and Y!
 - a reduction from Y to X shows...
 - > if you could solve X efficiently, then you could solve Y efficiently
 - > so Y is no harder than X (Y \leq_P X)

Reductions in Theory

- > Only need **one** reduction from an NP-hard problem to X to prove that X is NP-hard
 - suppose Y is NP-hard
 - > i.e., Z \leq_P Y for every Z in NP
 - − suppose $Y \leq_P X$
 - then X is NP-hard
 - > $Z \leq_P Y \leq_P X$ (so $Z \leq_P X$) for every Z in NP

Reductions in Theory

> Dick Karp popularized NP-completeness using reductions...

Dick Karp (1972) 1985 Turing Award

Reductions in Practice

- > 99% of known NP-complete problems are from reductions
 - reductions seem to be much easier than direct proofs
- > Reductions are a useful tool in practice
 - they let you **prove** that there is almost certainly no way to solve it efficiently

W

so you can stop trying to find an exact solution

Reductions in Practice

> Reductions are a useful tool in practice

- they let you **prove** that there is almost certainly no way to solve it efficiently
- so you can stop trying to find an exact solution
- > In practice, almost every NP problem is in P or is NP-complete
 - hence, you can either find an algorithm or prove there is none
 - on the other hand..
- > Theorem (Ladner): if P ≠ NP, then there are *infinitely many* problems that are in NP, not in P, and not NP-complete.

Garey & Johnson

- > "Computers and Intractability" by Garey & Johnson contains over 300 NP-complete problems
 - can give you a quick answer for many, many problems
 - book is from 1979
- > More problems have been found since then
 - see the web

Michael R. Garey / David S. Johnson

More Theory About Reductions

> **Definition**: Problem Y is polynomial-time <u>reducible</u> to X, denoted $Y \leq_P X$, if there is a polynomial time algorithm that solves Y assuming a polynomial-time subroutine for solving X.

> Technical Details

- Karp used a weaker (more difficult to achieve) notion of reduction:
 - > algorithm can only make one call to the subroutine AND algorithm must simply return whatever that returns
 - > i.e., algorithm constructs one problem for X to solve that has the property that it is solvable iff the Y problem given is solvable

More Theory About Reductions

> **Definition**: Problem Y is polynomial-time <u>reducible</u> to X, denoted $Y \leq_P X$, if there is a polynomial time algorithm that solves Y assuming a polynomial-time subroutine for solving X.

> Technical Details

- Karp used a weaker (more difficult to achieve) notion of reduction
- it is (AFAIK) still an open problem whether this difference matters
 - > last I checked, every NP-completeness reduction could be made even weaker
 - (specifically, they can be done as Karp reductions in log space)
- like the textbook, I will ignore the difference

Outline for Today

- > P and NP
- > **Reductions**

> Some NP-complete Problems

NP-Complete Problems

- > Have already seen some...
- > Knapsack
 - pseudo-poly time algorithm shows only hard with big numbers
- > 0/1 (integer) linear programming
 - reason why min cost flow problems (special case) are important
- > Independent set
 - find set of k nodes in a graph with no edges between them

NP-Complete Problems

> Some are **opposites** of easy problems...

- > Longest path
 - cannot simply negate edge lengths...
 - our algorithms assume no negative length cycles
- > Max cut
 - can negate costs but not capacities (those were assumed \geq 0)

NP-Compete Problems

> Both textbook and Garey & Johnson look at six problem types

most useful to reduce *from* ("easiest" of NP-hard problems)

Packing	independent set	clique
Covering	vertex cover	
Constraint Satisfaction	3-SAT	SAT
Sequencing	Hamiltonian cycle	TSP
Partitioning	3D matching	
Numerical	partition	subset sum, knapsack

Packing Problems

- > Independent Set: Given graph G and number k, find a subset of k nodes such that no two are connected by an edge
- > Clique: Given graph G and number k, find a subset of k nodes such that every pair are connected by an edge

> Reductions (Independent Set \equiv_P Clique):

- Let G' be the opposite graph:
 - > N' = N
 - > (u,v) in E' iff (u, v) not in E
- nodes are independent in G iff they are clique in G'

Covering Problems

- > **Vertex Cover**: Given graph G and number k, find a subset of k nodes such that every edge is adjacent to at least one of them
- > Reduction (Independent Set \equiv_P Vertex Cover):
 - subset S is independent iff V S is a vertex cover:
 - > S is independent **iff** for every (u,v) in E, either u not in S or v not in S **iff**
 - for every (u,v) in E, either u in V S or v in V S **iff** V S is covering
 - reduction to vertex cover:
 - > call vertex cover with k replaced by n k
 - reduction to independent set: same

Constraint Satisfaction Problems

- SAT: Given a logical formula on variables x₁, ..., x_n using only and, or, & not, determine whether there is a setting of the variables to T/F so that the formula evaluates to T
- > **3-SAT**: As above, but formula is of the form " t_1 and t_2 ... and t_m ", where each t_i is of the form " f_{i1} or f_{i2} or f_{i3} ", where each f_{ij} is either " x_k " or "**not** x_k " for some k
 - e.g.: $((not x_1) \text{ or } x_2 \text{ or } x_3)$ and $(x_1 \text{ or } (not x_2) \text{ or } x_3)$ and $((not x_1) \text{ or } (not x_2) \text{ or } (not x_3))$

Constraint Satisfaction Problems

- SAT: Given a logical formula on variables x₁, ..., x_n using only and, or, & not, determine whether there is a setting of the variables to T/F so that the formula evaluates to T
 - Cook proved directly that this is NP-complete
- > **3-SAT**: As above, but formula is of the form " t_1 and t_2 ... and t_m ", where each t_i is of the form " f_{i1} or f_{i2} or f_{i3} ", where each f_{ij} is either " x_k " or "**not** x_k " for some k
 - can see that 3-SAT \leq_P SAT because former is special case
 - requires work to show the opposite (will skip details)

Sequencing Problems

- > **Hamiltonian Cycle**: Given a graph G, find a cycle that visits every node exactly once (a "simple" cycle of length n)
- > Traveling Salesperson Problem (TSP): Given weighted graph G and number v, find a Hamiltonian cycle of length at most v

> Reduction (Hamiltonian Cycle \leq_P TSP):

- take the weight of each edge to be 1
- find a cycle of length n

Partitioning Problems

- > 3D Matching: Given disjoint sets X, Y, Z and a set of M of triples of the form (x,y,z), with x in X, y in Y, and z in Z and a number k, find a set of k triples with no x's, y's, or z's in common
 - could call this "tri-partite matching"
- > Reduction (bipartite matching \leq_P 3D matching):
 - node set is split into X and Y
 - let Z be the set of edges
 - triple for each edge (u, v, (u,v))
 - > no triples have the same Z part, so intersection means u or v is same
 - note: this does not show that bipartite matching is NP-hard!

Numerical Problems

- > Knapsack: Given items of the form (w_i, v_i) and a number W, find the largest total value of any subset of total weight at most W
- Subset Sum: Given weights w₁, ..., w_n and a number W, find a subset whose total weight is exactly W
- > Reduction (Subset Sum \leq_P Knapsack):
 - choose the values equal to the weights
 - Knapsack gives the largest sum of weights \leq W
 - just check if it equals W

https://xkcd.com/287/

Numerical Problems

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Numerical Problems

- > **Partition**: Given set W = $\{w_1, ..., w_n\}$ of weights, find a subset S such that total weight of S is total weight of W S
 - i.e., does it split into two parts of equal weights?
- > Reduction (Subset Sum \leq_{P} Partition):
 - add two extra weights: (sum of weights) + W and 2 x (sum of weights) W
 - total weight of all items is now 4 x (sum of weights)
 - two new elements cannot be in the same side of partition

$$v_{n+1} = 2 \Sigma_i w_i - W \qquad W$$

$$v_{n+2} = \Sigma_i w_i + W \qquad \Sigma_i w_i - W$$

