CSE 417
Branch & Bound (pt1)

NP-Completeness

Review of previous topics

> Modeling techniques
— shortest paths (intersection of both network flows and dynamic programming)
— binary search
— network flows (max flow & min cost flow)

> Design techniques
— divide and conquer
— dynamic programming
— branch and bound

> applies to problems too hard to solve with the other techniques
> (in particular, it applies to NP-complete problems, defined shortly...)

P

> Definition: P is the set of problems that can be solved in
polynomial time by a sufficiently large computer
— (one with enough memory)

> Theoretical details:
— polynomial time in the number of bits of input
> excludes pseudo-polynomial time algorithms
— only decision problems
> equivalent to optimization due to binary search
— algorithm must run on a Turing machine
> equivalent to usual machines

P: History

> “Invented” by Jack Edmonds (1965)

— earlier work often focused on actual running times on real machines

— Edmonds wanted to explain the significance of his matching algorithm
> solved general matching (harder than bipartite matching) in polynomial time
> paper was rejected multiple times

> (Note: von Neumann and others also helped “invent” P)

P: Theory vs Practice

> Polynomial time algorithms are typically more useful in practice
— some pseudo-poly and exponential time algorithms are useful (more later...)
— some polynomial algorithms are not useful (e.g., O(n&))
— in general, though, it is a good dividing line

> Need this definition to get a reasonable theory

— want the following pieces:
> linear time is fast

> if function g is fast and f, which calls g as a subroutine, is fast if
we count calls to g as one operation, then fis fast (composability)

— those two imply polynomial time is fast

NP

> Definition: NP is the set of problems for which a correct answer
can be verified in polynomial time
— i.e., the problem of checking whether an answer is correctis in P
— P S NP but NP is believed to be strictly larger

— (implies that a correct answer must be polynomial size...
> so these are problems with small (polynomial size) proofs of correctness)

> This is not true of all problems, e.g.:
— testing equivalence of regular expressions

— solving (generalized) chess or go
> proof of a winning strategy is very large

NP-Completeness

> Definition: Problem X is NP-hard if any problem in NP could be
solved in polynomial time if given a function that solves X

> Shows that X is as hard as any problem in NP

> Definition: Problem X is NP-complete if it is in NP and is NP-hard

> NP-complete problems are the hardest problems in NP

— can solve these problems iff P = NP
> solving these would solve them all

NP-Completeness

>

Boolean Satisfiability (SAT): given a logical formula on variables
X1, ...s X USINg ONly and, or, & not, determine whether there is a
setting of the variables to T/F so that the formula evaluatesto T

— in NP
— short proof of correctness: give the T variables and the F variables

Theorem (Cook-Levin): SAT is NP-complete
— (see textbook for a proof)

Pvs NP

> Can win $1,000,000 by proving that P # NP (or P = NP)...

> Proving P = NP would be easier (if it were true)
— justinvent a polynomial time algorithm for any NP-complete problem

— unfortunately, we don't think such an algorithm exists
> since so many smart people have been trying hard for decades

> Proving P # NP is deviously difficult...

Pvs NP

> Can win $1,000,000 by proving that P # NP (or P = NP)...

> Proving P # NP is deviously difficult...

— if P = NP, then we would have a poly time algorithm to find the proof
> (finding a proof of certain logical statements is NP-complete)
> unfortunately, there would be no proof in that case

— if P # NP, then we could hope for a “natural proof”
> (formalizes the idea of how most would normally try to prove this)

> unfortunately, Razborov & Rudich proved that such a proof
would actually imply that P = NP

— most other reasonable ideas for proofs have been ruled out
> hard to find an approach that seems workable & hasn't been ruled out

Pvs NP

> In mathematics, P vs NP is unsettled
— though most believe they are unequal

> In physics, P # NP is often taken as a physical law
— (see recent work on black holes etc.)

— simple version: “this Ising model must take exponential time to cool down
because if not you could use it to solve NP-complete problems in poly time

n

> (Actually, nearly all physicists believe BQP, not P, is the
set of problems that can be solved physically...
— these are problems solvable on quantum computers)

Reductions

> Definition: Problem Y is polynomial-time reducible to X,
denoted Y <; X, if there is a polynomial time algorithm that
solves Y assuming a polynomial-time subroutine for solving X.

— algorithm makes poly(n) calls to the subroutine and does poly(n) other work

> The algorithm here is called a (Cook) “reduction”
— show that Y is no harder than X (Y < X) by giving a reduction from Y to X

Reductions

> Definition: Problem Y is polynomial-time reducible to X,
denoted Y <; X, if there is a polynomial time algorithm that
solves Y assuming a polynomial-time subroutine for solving X.

> Re-definition: X is NP-hard if, for every Y in NP, Y <p X
— i.e,, Xis at least as hard as any problem in NP

Reductions

> Definition: Problem Y is polynomial-time reducible to X,
denoted Y <; X, if there is a polynomial time algorithm that
solves Y assuming a polynomial-time subroutine for solving X.

> Warning: do not confuse the order of X and Y!

— areduction fromY to X shows...
> if you could solve X efficiently, then you could solve Y efficiently

> so Y is no harder than X (Y <;p X)

Reductions in Theory

> Only need one reduction from an NP-hard problem to X to prove
that X is NP-hard
— suppose Y is NP-hard
> i.e., Z<p Y forevery Zin NP
— suppose Y < X

— then Xis NP-hard
> Z<pY <p X (s0Z < X) for every Zin NP

Reductions in Theory

> Dick Karp popularized NP-completeness using reductions...

SATISFIABILITY

l 0-1 INTEGER I

cLIqlE SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE SET
//COVER PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED . EXACT CLIQUE
NOD
ODE SET ARC SET HAMILTON ST COVER COVER

CIRCUIT

| Tarcune | rsace JfFEN S
UNDIRECTED

HAMILTON
CIRCUIT

SEQUENCING PARTITION

MAX CUT

4 .",-'1.' ’ /

Dick Karp (1972)

1985 Turing Award

Reductions in Practice

> 99% of known NP-complete problems are from reductions
— reductions seem to be much easier than direct proofs

> Reductions are a useful tool in practice
— they let you prove that there is almost certainly no way to solve it efficiently
— SO you can stop trying to find an exact solution

Reductions in Practice

> Reductions are a useful tool in practice
— they let you prove that there is almost certainly no way to solve it efficiently
— SO Yyou can stop trying to find an exact solution

> |n practice, almost every NP problem is in P or is NP-complete
— hence, you can either find an algorithm or prove there is none
— on the other hand..

> Theorem (Ladner): if P # NP, then there are infinitely many problems
that are in NP, not in P, and not NP-complete.

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

Garey & Johnson

> "Computers and Intractability” by Garey & Johnson
contains over 300 NP-complete problems

— can give you a quick answer for many, many problems
— bookis from 1979

> More problems have been found since then
— see the web

More Theory About Reductions

> Definition: Problem Y is polynomial-time reducible to X,
denoted Y <; X, if there is a polynomial time algorithm that
solves Y assuming a polynomial-time subroutine for solving X.

> Technical Details

— Karp used a weaker (more difficult to achieve) notion of reduction:

> algorithm can only make one call to the subroutine AND
algorithm must simply return whatever that returns

> i.e., algorithm constructs one problem for X to solve that has the
property that it is solvable iff the Y problem given is solvable

More Theory About Reductions

> Definition: Problem Y is polynomial-time reducible to X,
denoted Y <; X, if there is a polynomial time algorithm that
solves Y assuming a polynomial-time subroutine for solving X.

> Technical Details
— Karp used a weaker (more difficult to achieve) notion of reduction

— itis (AFAIK) still an open problem whether this difference matters

> last | checked, every NP-completeness reduction could be made even weaker
— (specifically, they can be done as Karp reductions in log space)

— like the textbook, | will ignore the difference

NP-Complete Problems

> Have already seen some...

> Knapsack
— pseudo-poly time algorithm shows only hard with big numbers

> 0/1 (integer) linear programming
— reason why min cost flow problems (special case) are important

> Independent set
— find set of k nodes in a graph with no edges between them

NP-Complete Problems

> Some are opposites of easy problems...

> Longest path
— cannot simply negate edge lengths...
— our algorithms assume no negative length cycles

> Max cut
— can negate costs but not capacities (those were assumed > 0)

NP-Compete Problems

> Both textbook and Garey & Johnson look at six problem types
— most useful to reduce from (“easiest” of NP-hard problems)

Packing independent set cligue
Covering vertex cover

Constraint Satisfaction 3-SAT SAT
Sequencing Hamiltonian cycle TSP
Partitioning 3D matching

Numerical partition subset sum, knapsack

Packing Problems

> Independent Set: Given graph G and number k, find a subset of
k nodes such that no two are connected by an edge

> Clique: Given graph G and number k, find a subset of k nodes
such that every pair are connected by an edge

> Reductions (Independent Set =, Clique):
— Let G' be the opposite graph:
> N'=N
> (u,v)in E"iff (u, v) notinE
— nodes are independent in G iff they are clique in G’

Covering Problems

> Vertex Cover: Given graph G and number k, find a subset of k
nodes such that every edge is adjacent to at least one of them

> Reduction (Independent Set =, Vertex Cover):

— subset Sisindependent iff V - S is a vertex cover:

> Sisindependent iff for every (u,v) in E, either u notin S or v notin S iff
for every (u,v) in E, eitheruinV-SorvinV-SiffV-Sis covering

— reduction to vertex cover:
> call vertex cover with k replaced by n - k
— reduction to independent set: same

Constraint Satisfaction Problems

> SAT: Given a logical formula on variables x;, ..., X, using only and,
or, & not, determine whether there is a setting of the variables
to T/F so that the formula evaluatesto T

> 3-SAT: As above, but formula is of the form “t,; and t, ... and t.,”,
where each t; is of the form “f;; or f,, or f5",
where each f; is either “x,” or “not x,” for some k

— e.g.. ((notx,)orx,orxs)and
(X4 or (not x,) or x3) and
((not x4) or (not x,) or (not x3))

Constraint Satisfaction Problems

> SAT: Given a logical formula on variables x;, ..., X, using only and,
or, & not, determine whether there is a setting of the variables
to T/F so that the formula evaluatesto T
— Cook proved directly that this is NP-complete

> 3-SAT: As above, but formula is of the form “t; and t, ... and t.,”,
where each t; is of the form “f;; or f,, or f5",
where each fj is either “x,” or “not x,” for some k

— can see that 3-SAT <, SAT because former is special case
— requires work to show the opposite (will skip details)

Sequencing Problems

> Hamiltonian Cycle: Given a graph G, find a cycle that visits
every node exactly once (a “simple” cycle of length n)

> Traveling Salesperson Problem (TSP): Given weighted graph G
and number v, find a Hamiltonian cycle of length at most v

> Reduction (Hamiltonian Cycle <, TSP):
— take the weight of each edge to be 1
— find a cycle of length n

Partitioning Problems

> 3D Matching: Given disjoint sets X, Y, Z and a set of M of triples
of the form (x,y,z), with xin X,y inY, and zin Z and a number k,
find a set of k triples with no x’s, y's, or z's in common
— could call this “tri-partite matching”

> Reduction (bipartite matching <, 3D matching):
— node setis splitinto Xand Y
— let Z be the set of edges
— triple for each edge (u, v, (u,v))
> no triples have the same Z part, so intersection means u or v is same
— note: this does not show that bipartite matching is NP-hard!

Numerical Problems

> Knapsack: Given items of the form (w;, v;) and a number W, find
the largest total value of any subset of total weight at most W

> Subset Sum: Given weights w;, ..., w, and a number W, find a
subset whose total weight is exactly W

> Reduction (Subset Sum <, Knapsack):
— choose the values equal to the weights
— Knapsack gives the largest sum of weights <W
— just check if it equals W

https://xkcd.com/287/

Numerical Problems

MY HoBBY:
EMBEDDING NP-QOMPLETE PROBLEMS IN RESTAURANT ORDERS

{ CHOTCHKIES RESTAURA VT

«— APPENZERS
MIED FRUIT 2.15
FRENCH FRIES 275
SIDE SALAD 3.35
HOT WINGS 3.55

MOZZARELLA STICXS 4.20
SAMPLER PLATE 5.80

—— SANDWICHES ~—

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE.

l . DXACLY? UHK ..
HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.
LISTEN, I HAVE Six OTHER
TABLES TO GET T0 —

—AS FAST AS POSSIBLE, (F (OURSE. WANT
SOMETHING ON TRAVELING SALESNAN? /

\
(¥IVR

L 8T

Numerical Problems

> Partition: Given set W = {w,, ..., w,} of weights, find a subset S
such that total weight of S is total weight of W - S
— i.e., does it split into two parts of equal weights?

> Reduction (Subset Sum <; Partition):
— add two extra weights: (sum of weights) + W and 2 x (sum of weights) - W

— total weight of all items is now 4 x (sum of weights)
— two new elements cannot be in the same side of partition

o wemeew

