CSE 417 Branch \& Bound (pt 1) NP-Completeness

Reminders

> HW7 is due today

> HW8 will be posted shortly

- network flow coding
- model the problem of rounding table entries as max flow
> you are given a library that solves basic max flow

Review of previous topics

> Modeling techniques

- shortest paths (intersection of both network flows and dynamic programming)
- binary search
- network flows (max flow \& min cost flow)
> Design techniques
- divide and conquer
- dynamic programming
- branch and bound
> applies to problems too hard to solve with the other techniques
> (in particular, it applies to NP-complete problems, defined shortly...)

Outline for Today

$>\mathrm{P}$ and NP
> Reductions
> Some NP-complete Problems

P
> Definition: P is the set of problems that can be solved in polynomial time by a sufficiently large computer

- (one with enough memory)
> Theoretical details:
- polynomial time in the number of bits of input
> excludes pseudo-polynomial time algorithms
- only decision problems
> equivalent to optimization due to binary search
- algorithm must run on a Turing machine
> equivalent to usual machines

P: History

> "Invented" by Jack Edmonds (1965)

- earlier work often focused on actual running times on real machines
- Edmonds wanted to explain the significance of his matching algorithm
$>$ solved general matching (harder than bipartite matching) in polynomial time
> paper was rejected multiple times
> (Note: von Neumann and others also helped "invent" P)

P: Theory vs Practice

> Polynomial time algorithms are typically more useful in practice

- some pseudo-poly and exponential time algorithms are useful (more later...)
- some polynomial algorithms are not useful (e.g., O(n ${ }^{8}$))
- in general, though, it is a good dividing line
$>$ Need this definition to get a reasonable theory
- want the following pieces:
$>$ linear time is fast
$>$ if function g is fast and f, which calls g as a subroutine, is fast if we count calls to g as one operation, then f is fast (composability)
- those two imply polynomial time is fast

NP

> Definition: NP is the set of problems for which a correct answer can be verified in polynomial time

- i.e., the problem of checking whether an answer is correct is in P
- $P \subseteq N P$ but NP is believed to be strictly larger
- (implies that a correct answer must be polynomial size...
> so these are problems with small (polynomial size) proofs of correctness)
> This is not true of all problems, e.g.:
- testing equivalence of regular expressions
- solving (generalized) chess or go
> proof of a winning strategy is very large

NP-Completeness

> Definition: Problem X is NP-hard if any problem in NP could be solved in polynomial time if given a function that solves X
$>$ Shows that X is as hard as any problem in NP
> Definition: Problem X is NP-complete if it is in NP and is NP-hard
> NP-complete problems are the hardest problems in NP

- can solve these problems iff $\mathrm{P}=\mathrm{NP}$
> solving these would solve them all

NP-Completeness

> Boolean Satisfiability (SAT): given a logical formula on variables x_{1}, \ldots, x_{n} using only and, or, \& not, determine whether there is a setting of the variables to T/F so that the formula evaluates to T

- in NP
- short proof of correctness: give the T variables and the F variables
> Theorem (Cook-Levin): SAT is NP-complete
- (see textbook for a proof)

Pvs NP

> Can win $\$ 1,000,000$ by proving that $P \neq N P$ (or $P=N P$)...
> Proving P = NP would be easier (if it were true)

- just invent a polynomial time algorithm for any NP-complete problem
- unfortunately, we don't think such an algorithm exists
> since so many smart people have been trying hard for decades
> Proving $\mathrm{P} \neq \mathrm{NP}$ is deviously difficult...

Pvs NP

$>$ Can win $\$ 1,000,000$ by proving that $P \neq N P$ (or $P=N P$)...
$>$ Proving $P \neq$ NP is deviously difficult...

- if $P=N P$, then we would have a poly time algorithm to find the proof
> (finding a proof of certain logical statements is NP-complete)
$>$ unfortunately, there would be no proof in that case
- if $P \neq N P$, then we could hope for a "natural proof"
$>$ (formalizes the idea of how most would normally try to prove this)
> unfortunately, Razborov \& Rudich proved that such a proof would actually imply that $P=N P$
- most other reasonable ideas for proofs have been ruled out
> hard to find an approach that seems workable \& hasn't been ruled out

Pvs NP

> In mathematics, P vs NP is unsettled

- though most believe they are unequal
$>$ In physics, $\mathrm{P} \neq \mathrm{NP}$ is often taken as a physical law
- (see recent work on black holes etc.)
- simple version: "this Ising model must take exponential time to cool down because if not you could use it to solve NP-complete problems in poly time"
> (Actually, nearly all physicists believe BQP, not P, is the set of problems that can be solved physically...
- these are problems solvable on quantum computers)

Outline for Today

$>$ P and NP
$>$ Reductions
> Some NP-complete Problems

Reductions

> Definition: Problem Y is polynomial-time reducible to X, denoted $Y \leq_{p} X$, if there is a polynomial time algorithm that solves Y assuming a polynomial-time subroutine for solving X .

- algorithm makes poly(n) calls to the subroutine and does poly(n) other work
> The algorithm here is called a (Cook) "reduction"
- show that Y is no harder than $X\left(Y s_{p} X\right)$ by giving a reduction from Y to X

Reductions

> Definition: Problem Y is polynomial-time reducible to X, denoted $Y \leq_{p} X$, if there is a polynomial time algorithm that solves Y assuming a polynomial-time subroutine for solving X .
> Re-definition: X is NP-hard if, for every Y in $\mathrm{NP}, \mathrm{Y} \leq_{\mathrm{P}} \mathrm{X}$

- i.e., X is at least as hard as any problem in NP

Reductions

> Definition: Problem Y is polynomial-time reducible to X, denoted $Y \leq_{p} X$, if there is a polynomial time algorithm that solves Y assuming a polynomial-time subroutine for solving X .
> Warning: do not confuse the order of X and Y !

- a reduction from Y to X shows...
> if you could solve X efficiently, then you could solve Y efficiently
$>$ so Y is no harder than $X\left(Y \leq_{p} X\right)$

Reductions in Theory

> Only need one reduction from an NP-hard problem to X to prove that X is NP-hard

- suppose Y is NP-hard
$>$ i.e., $Z \leq_{p} Y$ for every Z in $N P$
- suppose $Y \leq_{p} X$
- then X is NP-hard
$>\mathrm{Z} \leq_{p} \mathrm{Y} \leq_{p} \mathrm{X}\left(\right.$ so $\left.\mathrm{Z} \leq_{p} \mathrm{X}\right)$ for every Z in $N P$

Reductions in Theory

> Dick Karp popularized NP-completeness using reductions...

Dick Karp (1972) 1985 Turing Award

Reductions in Practice

> 99\% of known NP-complete problems are from reductions

- reductions seem to be much easier than direct proofs
> Reductions are a useful tool in practice
- they let you prove that there is almost certainly no way to solve it efficiently
- so you can stop trying to find an exact solution

Reductions in Practice

> Reductions are a useful tool in practice

- they let you prove that there is almost certainly no way to solve it efficiently
- so you can stop trying to find an exact solution
> In practice, almost every NP problem is in P or is NP-complete
- hence, you can either find an algorithm or prove there is none
- on the other hand..
$>$ Theorem (Ladner): if $P \neq N P$, then there are infinitely many problems that are in NP, not in P, and not NP-complete.

Garey \& Johnson

> "Computers and Intractability" by Garey \& Johnson contains over 300 NP-complete problems

- can give you a quick answer for many, many problems
- book is from 1979
> More problems have been found since then
- see the web

More Theory About Reductions

> Definition: Problem Y is polynomial-time reducible to X, denoted $Y \leq_{p} X$, if there is a polynomial time algorithm that solves Y assuming a polynomial-time subroutine for solving X .

> Technical Details

- Karp used a weaker (more difficult to achieve) notion of reduction:
> algorithm can only make one call to the subroutine AND algorithm must simply return whatever that returns
> i.e., algorithm constructs one problem for X to solve that has the property that it is solvable iff the Y problem given is solvable

More Theory About Reductions

> Definition: Problem Y is polynomial-time reducible to X, denoted $Y \leq_{p} X$, if there is a polynomial time algorithm that solves Y assuming a polynomial-time subroutine for solving X .

> Technical Details

- Karp used a weaker (more difficult to achieve) notion of reduction
- it is (AFAIK) still an open problem whether this difference matters
> last I checked, every NP-completeness reduction could be made even weaker
- (specifically, they can be done as Karp reductions in log space)
- like the textbook, I will ignore the difference

Outline for Today

$>$ P and NP
$>$ Reductions
> Some NP-complete Problems

NP-Complete Problems

> Have already seen some...
> Knapsack

- pseudo-poly time algorithm shows only hard with big numbers
> 0/1 (integer) linear programming
- reason why min cost flow problems (special case) are important
> Independent set
- find set of k nodes in a graph with no edges between them

NP-Complete Problems

> Some are opposites of easy problems...
> Longest path

- cannot simply negate edge lengths...
- our algorithms assume no negative length cycles
> Max cut
- can negate costs but not capacities (those were assumed ≥ 0)

NP-Compete Problems

> Both textbook and Garey \& Johnson look at six problem types

- most useful to reduce from ("easiest" of NP-hard problems)

Packing	independent set	clique
Covering	vertex cover	
Constraint Satisfaction	3-SAT	SAT
Sequencing	Hamiltonian cycle	TSP
Partitioning	3D matching	
Numerical	partition	subset sum, knapsack

Packing Problems

> Independent Set: Given graph G and number k, find a subset of k nodes such that no two are connected by an edge
> Clique: Given graph G and number k, find a subset of k nodes such that every pair are connected by an edge
> Reductions (Independent Set \equiv_{p} Clique):

- Let G' be the opposite graph:
$>\mathrm{N}^{\prime}=\mathrm{N}$
$>(u, v)$ in E^{\prime} iff (u, v) not in E
- nodes are independent in G iff they are clique in G^{\prime}

Covering Problems

> Vertex Cover: Given graph G and number k, find a subset of k nodes such that every edge is adjacent to at least one of them
> Reduction (Independent Set \equiv_{p} Vertex Cover):

- subset S is independent iff $\mathrm{V}-\mathrm{S}$ is a vertex cover:
$>S$ is independent iff for every (u, v) in E, either u not in S or v not in S iff for every (u, v) in E, either u in $V-S$ or v in $V-S$ iff $V-S$ is covering
- reduction to vertex cover:
$>$ call vertex cover with k replaced by $\mathrm{n}-\mathrm{k}$
- reduction to independent set: same

Constraint Satisfaction Problems

> SAT: Given a logical formula on variables x_{1}, \ldots, x_{n} using only and, or, \& not, determine whether there is a setting of the variables to T / F so that the formula evaluates to T
> 3-SAT: As above, but formula is of the form " t_{1} and $\mathrm{t}_{2} \ldots$ and t_{m} ", where each t_{i} is of the form "f $\mathrm{f}_{\mathrm{i} 1}$ or $\mathrm{f}_{\mathrm{i} 2}$ or $\mathrm{f}_{\mathrm{i} 3}$ ", where each $f_{i j}$ is either " x_{k} " or "not x_{k} " for some k

- e.g.: ((not $\left.x_{1}\right)$ or x_{2} or $\left.x_{3}\right)$ and (x_{1} or $\left(\operatorname{not} x_{2}\right)$ or $\left.x_{3}\right)$ and $\left(\left(\operatorname{not} x_{1}\right) \operatorname{or}\left(\operatorname{not} x_{2}\right) \operatorname{or}\left(\operatorname{not} x_{3}\right)\right)$

Constraint Satisfaction Problems

> SAT: Given a logical formula on variables x_{1}, \ldots, x_{n} using only and, or, \& not, determine whether there is a setting of the variables to T / F so that the formula evaluates to T

- Cook proved directly that this is NP-complete
> 3-SAT: As above, but formula is of the form " t_{1} and $\mathrm{t}_{2} \ldots$ and t_{m} ", where each t_{i} is of the form " $\mathrm{f}_{\mathrm{i} 1}$ or $\mathrm{f}_{\mathrm{i} 2}$ or $\mathrm{f}_{\mathrm{i} 3}$ ", where each $f_{i j}$ is either " x_{k} " or "not x_{k} " for some k
- can see that 3-SAT \leq_{p} SAT because former is special case
- requires work to show the opposite (will skip details)

Sequencing Problems

> Hamiltonian Cycle: Given a graph G, find a cycle that visits every node exactly once (a "simple" cycle of length n)
> Traveling Salesperson Problem (TSP): Given weighted graph G and number v, find a Hamiltonian cycle of length at most v
> Reduction (Hamiltonian Cycle \leq_{p} TSP):

- take the weight of each edge to be 1
- find a cycle of length n

Partitioning Problems

> 3D Matching: Given disjoint sets X, Y, Z and a set of M of triples of the form (x, y, z), with x in X, y in Y, and z in Z and a number k, find a set of k triples with no $x^{\prime} s, y^{\prime} s$, or $z^{\prime} s$ in common

- could call this "tri-partite matching"
> Reduction (bipartite matching \leq_{p} 3D matching):
- node set is split into X and Y
- let Z be the set of edges
- triple for each edge ($u, v,(u, v)$)
> no triples have the same Z part, so intersection means u or v is same
- note: this does not show that bipartite matching is NP-hard!

Numerical Problems

> Knapsack: Given items of the form $\left(w_{i}, v_{i}\right)$ and a number W , find the largest total value of any subset of total weight at most W
> Subset Sum: Given weights $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$ and a number W , find a subset whose total weight is exactly W
> Reduction (Subset Sum \leq_{p} Knapsack):

- choose the values equal to the weights
- Knapsack gives the largest sum of weights $\leq W$
- just check if it equals W

Numerical Problems

MY HOBBY:
EMBEDING NP-COMPLEETE PROBLETS IN RESTAURANT ORDERS

Numerical Problems

> Partition: Given set $\mathrm{W}=\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{n}\right\}$ of weights, find a subset S such that total weight of S is total weight of $\mathrm{W}-\mathrm{S}$

- i.e., does it split into two parts of equal weights?
$>$ Reduction (Subset Sum \leq_{p} Partition):
- add two extra weights: (sum of weights) +W and $2 \times$ (sum of weights) -W
- total weight of all items is now $4 \times$ (sum of weights)
- two new elements cannot be in the same side of partition

$$
v_{n+1}=2 \Sigma_{i} w_{i}-W \quad W
$$

