
CSE 417
Network Flows (pt 4)
Min Cost Flows

> HW6 is due Monday

Reminders

> Defined the maximum flow problem
– find the feasible flow of maximum value
– flow is feasible if it satisfies edge capacity and node balance constraints

> Described the Ford-Fulkerson algorithm
– starts with a feasible flow (all zeros) and improves it (by augmentations)
– essentially optimal if max capacity into t is O(1)

> Many, many other algorithms...

Review of last three lectures

> Modeling with matching, flows, & cuts
– matching: allow multiple matches, restrict to groups
– flows: node capacities, lower bounds, etc.
– cuts: translate min to max, restrict allowed subsets using infinite capacities

> one cut per subset of V \ {s, t}

> Many of those graphs have O(1) capacities, so F-F is fast

Review of last three lectures

> Theorem: value of max-flow = capacity of min-cut
– any flow value ≤ any cut capacity

> flow has to leave via those edges
– F-F gives us a flow that matches cut value

> flow value = flow leaving cut – flow entering cut
> cut edges are saturated
> backward edges have 0 flow

Review of last three lectures

s t

> Techniques for efficiently solving problems defined over subsets:
1. dynamic programming
2. minimum cuts

> Cuts: define a graph where cut capacity = value
– restrict allowed cuts using infinite capacities on edges

> no min cut will ever include an infinite capacity edge
– examples last time were maximization, so we had cut capacity = C – value

> minimizing capacity is maximizing value when C is constant

Review of last three lectures

> Dynamic Programming over Subsets
> Minimum Cost Flows
> Cycle Canceling Algorithm
> Augmenting Path Algorithm
> Other Algorithms

Outline for Today

> Dynamic programming can be applied to any problem on subsets
– opt solution on {a1, ..., an} = better of

opt solution on {a1, ..., an-1} and
(opt solution on {a1, ..., an-1} to which an can be legally added) + an

> BUT if problem is hard (e.g., NP-complete), it will be slow
– in particular, there will be too many sub-problems

> Key point: don’t have to guess if DP will work
– just count the number of sub-problems you get
– if it’s small, the technique works

Dynamic Programming Over Subsets

> Problem (Independent Set): Given a graph, find the largest subset
of nodes such that no two are connected by an edge.
– (sort of opposite of a matching problem)

> Apply dynamic programming...
– opt solution on {a1, ..., an} = better of

opt solution on {a1, ..., an-1} and
(opt solution on {a1, ..., an-1} to which an can be legally added) + an

– latter is subsets of {a1, ..., an-1} with no neighbors an

DP Over Subsets: Non-Example

a e

b d

c

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d

...
find opt solution on a, b, c, d not adjacent to e

...

DP Over Subsets: Non-Example

a e

b d

c

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d

find opt solution on a, b, c
...

find opt solution on a, b, c not adjacent to d
...

find opt solution on a, b, c, d not adjacent to e
...

DP Over Subsets: Non-Example

a e

b d

c

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d

...
find opt solution on a, b, c, d not adjacent to e

find opt solution on a, b, c not adjacent to e
...

find opt solution on a, b, c not adjacent to {d, e}
...

DP Over Subsets: Non-Example

a e

b d

c

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d

...
find opt solution on a, b, c, d not adjacent to e

find opt solution on a, b, c not adjacent to e
find opt solution on a, b not adjacent to e

...
find opt solution on a, b not adjacent to {c, e}

...
find opt solution on a, b, c not adjacent to {d, e}

...

DP Over Subsets: Non-Example

a e

b d

c

DP Over Subsets: Non-Example

a e

b d

c

> In general, sub-problems are:
find opt solution on a1, ..., aj not adjacent to S,
where S is some subset of {aj+1, ..., an}

– there are exponentially many such sub-problems
> (none of them repeat)

> So dynamic programming is not useful here...
– (we don’t have enough memory to memoize / build table)

> Problem: Given a list of items of two colors,
purple and gold, find the subset of maximum
value that does not have 2+ purples or 2+ golds
– (previous problem with golds connected to purples)

> Easy to solve this directly
– max(0, max value of a purple) + max(0, max value of a gold)

> Dynamic programming will do the same thing....

DP Over Subsets: Example

a e

b d

c

> Apply dynamic programming....
– opt solution on {a1, ..., an} = better of

opt solution on {a1, ..., an-1} and
(opt solution on {a1, ..., an-1} to which an can be legally added) + an

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d

...
find opt solution on a, b, c, d using no purples

...

DP Over Subsets: Example

a

e

b

d

c

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d

...
find opt solution on a, b, c, d using no purples

...

DP Over Subsets: Example

a

e

b

d

c

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d

find opt solution on a, b, c
...

find opt solution on a, b, c using no golds
...

find opt solution on a, b, c, d using no purples
find opt solution on a, b, c using no purples

...
find opt solution on a, b, c using no purples & no golds

...

DP Over Subsets: Example

a

e

b

d

c

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d

find opt solution on a, b, c
...

find opt solution on a, b, c using no golds
find opt solution on a, b using no golds

...
find opt solution on a, b using no purples and no golds

...
find opt solution on a, b, c, d using no purples

find opt solution on a, b, c using no purples
...

find opt solution on a, b, c using no purples & no golds
...

DP Over Subsets: Example

a

e

b

d

c

> In general, sub-problems are:
opt solution on a1, ..., ai
with (no purple / no gold / no purple or gold / any)

> Dynamic programming works well here
– only 4n sub-problems

> (means we are getting many, many repeats in the recursion)
– O(n) just like the direct solution

DP Over Subsets: Example

a

e

b

d

c

> Dynamic programming can be applied to any problem on subsets
– opt solution on {a1, ..., an} = better of

opt solution on {a1, ..., an-1} and
(opt solution on {a1, ..., an-1} to which an can be legally added) + an

> BUT if problem is hard (e.g., NP-complete), it will be slow
– in particular, there will be too many sub-problems

> Key point: don’t have to guess if DP will work
– just count the number of sub-problems you get
– if it’s small, the technique works

Dynamic Programming over Subsets

> Dynamic programming can be applied to any problem on subsets
– opt solution on {a1, ..., an} = better of

opt solution on {a1, ..., an-1} and
(opt solution on {a1, ..., an-1} to which an can be legally added) + an

> BUT if problem is hard (e.g., NP-complete), it will be slow
– in particular, there will be too many sub-problems

> HW6 problem 1 shows the good case (stays small)
> HW6 problem 3 shows the bad / normal case

Dynamic Programming over Subsets

> Dynamic Programming over Subsets
> Minimum Cost Flows
> Cycle Canceling Algorithm
> Augmenting Path Algorithm
> Other Algorithms

Outline for Today

> Problem: Given a graph G, two nodes s and t, a flow value v, and
both a capacity, ue, and a cost, ce, for each edge e, find the
feasible flow of value v with least cost.
– (note: changing capacity from ce to ue... ce is now cost of edge e)
– flow cost is defined as sum of fe ce over all edges

> (As before, a feasible flow is one that satisfies both
– flow balance constraint: excess(n) = 0 for each n ≠ s, t
– capacity constraint: fe ≤ ce for each edge e)

Minimum Cost Flow Problem

> Can generalize to include lower bounds and demands
– same constructions given for feasible flow apply to min cost flow

> remove lower bounds by subtracting them out
> remove demands by adding a new source and sink

– removing lower bounds changes value of the flow but not which is minimum

> Min cost flow many useful applications...
– more examples next lecture
– start with the two premier examples

Minimum Cost Flow Problem

> Problem: Given two equal-length lists of objects, A and B, and a
cost, ca,b, for each pair (a, b), find the perfect matching of
minimum total cost.
– a perfect matching is one that matches every a in A and every b in B
– cost of the matching is the sum of the costs of each match

> Saw (maximum) bipartite matching previously...
this is minimum cost bipartite matching

Assignment Problem

Assignment Problem Example

A

B

> Solution: model as a min cost flow problem
– start with the same modeling as for (maximal) bipartite matching
– set edge (a, b) to have cost ca,b

Assignment Problem

A’s B’s

s t
1

1

1

1

1

1

ca,b gold	=	cost
purple	=	capacity

> Solution: model as a min cost flow problem
– start with the same modeling as for (maximal) bipartite matching

> create a graph whose nodes are the As and Bs
> source s has edge to each a in A with capacity 1
> target t has edge from each b in B with capacity 1

– set edge (a,b) to have cost ca,b

– find min cost flow of value |A|

> (As mentioned before, bipartite cases are not really special cases...
any flow graph can be made bipartite through a transformation)
– textbook only talks about this problem

Assignment Problem

> Problem: Given two equal-length lists of objects, A and B,
amounts to be supplied by each a in A, amounts required by
each b in B, and a cost, ca,b, for sending units from a to b, find the
least cost way to meet the required demands.
– sum of the demands should equal the sum of the supplies

> Application: Find the cheapest way to ship products from
warehouses (sources) to stores (sinks).

Transportation Problem

> Just a special case of min cost flow with demands where the
graph happens to be bipartite
– left side = supply nodes
– right side = sink nodes

> Solution: model as a min cost flow problem with demands
– apply the transformation to remove demands

Transportation Problem

> Max flow / feasible flow is a special case:
– setting all the costs to zero makes any flow of that value a solution
– (can use binary search to find the maximum flow value)

> Shortest path is a special case...
– (this includes negative cost edges, so no Dijkstra’s algorithm)

Relation to Other Flow Problems

> Shortest path from x to y is a special case:
– given a graph with costs (gold below) but no capacities (purple)
– add a source with a capacity-1 edge to x
– add a sink with a capacity-1 edge from y
– any 0/1 flow is a path — cost of the flow is the cost of that path

Relation to Other Flow Problems

s t

y

x
3

2 4 2
5

1

1

1

1

> Max flow / Feasible flow is essentially a special case

> Shortest path is a special case

> Most general flow problem we will see
> Most useful flow problem for modeling

> Best solutions to both problems take Ω(nm) time.
– we should expect algorithms slower than O(nm)

Relation to Other Flow Problems

no	costs

no	capacities

> Not harder because minimizing rather than maximizing
– as we saw with cuts, we can often turn minimization into maximization
– we could equivalently talk about max-cost flow: just negate all costs

> Key issue is the introduction of a new measure: costs
– max flow directly maximizes what is being constrained (flow values)
– min cost flow introduces a separate metric (costs) that needs to be minimized

and do not appear in the normal flow constraints
– look for this to see if you want to model

with min cost flow vs max flow

Why is this harder? (out of scope)

> Dynamic Programming over Subsets
> Minimum Cost Flows
> Cycle Canceling Algorithm
> Augmenting Path Algorithm
> Other Algorithms

Outline for Today

> One simple algorithm:
– start with any feasible flow
– repeat as long as possible:

> find a negative cost cycle in G(f)
> let δ be minimum capacity along the cycle
> push δ more flow along cycle

> Correctness: pushing flow along a cycle preserves balance
– every node gets δ more incoming and δ more outgoing
– hence, the flow remains feasible until termination

Cycle Canceling Algorithm

e.g.,	use	max	flow	algorithm

e.g.,	use	shortest	path	algorithm
(Bellman-Ford	can	detect	negative	cycles)

> One simple algorithm:
– start with any feasible flow
– repeatedly push flow along a negative cost cycle in G(f) until none exists

> Correctness: algorithm exits when flow is optimal
– i.e., feasible flow is optimal iff there are no negative cost cycles in G(f)
– if f’ were optimal, then f – f’ would be a circulation of positive cost

> i.e., if f and f’ both have excess du at u, then f – f’ has excess 0 at u
– circulation decomposes into a collection of cycles
– each cycle has non-negative cost

> if any had negative cost, f’ could be improved further

Cycle Canceling Algorithm

> One simple algorithm...
– start with any feasible flow
– repeatedly push flow along a negative cost cycle in G(f) until none exists

> Can use Bellman-Ford to find a negative cycle in O(nm) time
– (can actually use Dijkstra instead for this... see textbook)

> Total running time is O(nm2CU)
– where C is maximum cost and U is maximum capacity
– can prove this is O(n2 m3 log n) by choosing appropriate cycles

> use cycle with minimum average cost (see earlier lecture)

Cycle Canceling Algorithm

> Dynamic Programming over Subsets
> Minimum Cost Flows
> Cycle Canceling Algorithm
> Augmenting Path Algorithm
> Other Algorithms

Outline for Today

> Second simple algorithm:
– start with zero flow
– repeat until flow value is v:

> find min cost s ~> t path in G(f)
> push 1 more unit of flow along cycle

> Idea: preserves optimality rather than feasibility
– only get feasibility upon termination
– (note that this assumes no negative cost cycles in the graph

so that zero flow is optimal)

Augmenting Path Algorithm

> Second simple algorithm:
– start with zero flow
– repeatedly push 1 unit of flow along min cost s ~> t path in G(f) until value is v

> Correctness: pushing flow along a path preserves balance
– uses same augmentation process as used in max flow algorithm
– all constraints are satisfied except the value of the flow equaling v

Augmenting Path Algorithm

> Second simple algorithm:
– start with zero flow
– repeatedly push 1 unit of flow along min cost s ~> t path in G(f) until value is v

> Correctness: augmentation preserves optimality
– if pushing 1 flow produces non-optimal flow, G(f) has a negative cost cycle

> (see discussion of earlier algorithm)
– this can only happen because new edge (v, u) appears in G(f)

> augmenting path is s ~> u ➝ v ~> t
> cycle includes edge (v, u): v ➝ u ~> v
> combination is shorter s ~> t path: s ~> u ~> v ~> t — contradiction

Augmenting Path Algorithm

> Second simple algorithm:
– start with zero flow
– repeatedly push 1 unit of flow along min cost s ~> t path in G(f) until value is v

> Number of augmentations is value of flow
– as discussed with Ford-Fulkerson, value of flow ≤ nU

> Total running time is O(n2 m U)

Augmenting Path Algorithm

> Theorem: If all the capacities are integers, then there is a min cost
flow where each edge flow is integral.
– note: no restriction on costs

> Proof:
– our algorithms work via augmentations
– as before, if all capacities are integers, we will increase flows by integer amounts

on each iteration
– hence, the flow upon termination will be integral

Consequences

> Max flow algorithm repeatedly solves reachability
> Min cost flow algorithm repeatedly to shortest path

> Common: solve problem by repeatedly solving easier problem

> This is not an accident...
– both algorithms are special cases of the “primal dual algorithm” for LPs
– very useful technique for algorithms problems

> doesn’t always give optimal algorithms (as these examples show)
> but usually gives an algorithm and very useful insights

Primal-Dual Algorithm (out of scope)

> As with max flow, there are dual objects that give upper bounds
– in max flow those were cuts, which bound the value of any flow

> For min cost flow, the dual objects are actually distances
– can think of a cut as a special case: those in the cut are distance 0 from s and

those outside the cut are distance infinity from s
– min cost flow matches the upper bound given by shortest paths in G(f)

> This is another reason why both max / feasible flow &
shortest path are required to understand min cost flow

Duality (out of scope)

> Dynamic Programming over Subsets
> Minimum Cost Flows
> Cycle Canceling Algorithm
> Augmenting Path Algorithm
> Other Algorithms

Outline for Today

> Not as many algorithms for min cost flow as max flow

> Most prominent (& useful) is the network simplex method
– specialization of the simplex method for linear programming

to problems defined on graphs
– accommodates additional (linear) constraints very easily
– seems to be very fast in practice
– Tarjan proved O*(nm) bound in theory also

Other Algorithms (out of scope)

> In theory, this problem should not be any harder than max flow
– the space of feasible flows forms a convex set

> same for flows of a particular value
– min cost flow asks us to minimize a linear function over that set
– under mild assumptions, if you can solve the feasibility problem on a convex

set, then you can
> (need a “separation oracle” for the set)
> proof is to apply the Ellipsoid algorithm...

Other Algorithms (way out of scope)

