CSE 417 Network Flows (pt 4) Min Cost Flows

Reminders

> HW6 is due Monday

Review of last three lectures

> Defined the maximum flow problem

- find the feasible flow of maximum value
- flow is feasible if it satisfies edge capacity and node balance constraints
> Described the Ford-Fulkerson algorithm
- starts with a feasible flow (all zeros) and improves it (by augmentations)
- essentially optimal if max capacity into t is $O(1)$
> Many, many other algorithms...

Review of last three lectures

> Modeling with matching, flows, \& cuts

- matching: allow multiple matches, restrict to groups
- flows: node capacities, lower bounds, etc.
- cuts: translate min to max, restrict allowed subsets using infinite capacities
$>$ one cut per subset of $\mathrm{V} \backslash\{\mathrm{s}, \mathrm{t}\}$
> Many of those graphs have O(1) capacities, so F-F is fast

Review of last three lectures

> Theorem: value of max-flow = capacity of min-cut

- any flow value \leq any cut capacity
> flow has to leave via those edges
- F-F gives us a flow that matches cut value
> flow value = flow leaving cut - flow entering cut
> cut edges are saturated
> backward edges have 0 flow

Review of last three lectures

> Techniques for efficiently solving problems defined over subsets:

1. dynamic programming
2. minimum cuts
> Cuts: define a graph where cut capacity = value

- restrict allowed cuts using infinite capacities on edges
> no min cut will ever include an infinite capacity edge
- examples last time were maximization, so we had cut capacity = C - value
> minimizing capacity is maximizing value when C is constant

Outline for Today

> Dynamic Programming over Subsets

> Minimum Cost Flows
> Cycle Canceling Algorithm
> Augmenting Path Algorithm
> Other Algorithms

Dynamic Programming Over Subsets

> Dynamic programming can be applied to any problem on subsets

- opt solution on $\left\{a_{1}, \ldots, a_{n}\right\}=$ better of opt solution on $\left\{a_{1}, \ldots, a_{n-1}\right\}$ and (opt solution on $\left\{a_{1}, \ldots, a_{n-1}\right\}$ to which a_{n} can be legally added) $+a_{n}$
> BUT if problem is hard (e.g., NP-complete), it will be slow
- in particular, there will be too many sub-problems
> Key point: don't have to guess if DP will work
- just count the number of sub-problems you get
- if it's small, the technique works

DP Over Subsets: Non-Example

> Problem (Independent Set): Given a graph, find the largest subset of nodes such that no two are connected by an edge.

- (sort of opposite of a matching problem)
> Apply dynamic programming...
(b)
- opt solution on $\left\{a_{1}, \ldots, a_{n}\right\}=$ better of
opt solution on $\left\{a_{1}, \ldots, a_{n-1}\right\}$ and
(opt solution on $\left\{a_{1}, \ldots, a_{n-1}\right\}$ to which a_{n} can be legally added) $+a_{n}$
- latter is subsets of $\left\{a_{1}, \ldots, a_{n-1}\right\}$ with no neighbors a_{n}

DP Over Subsets: Non-Example

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d
find opt solution on a, b, c, d not adjacent to e

W

DP Over Subsets: Non-Example

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d
find opt solution on a, b, c
...
find opt solution on $\mathrm{a}, \mathrm{b}, \mathrm{c}$ not adjacent to d

find opt solution on a, b, c, d not adjacent to e

DP Over Subsets: Non-Example

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d
find opt solution on a, b, c, d not adjacent to e find opt solution on a, b, c not adjacent to e

find opt solution on a, b, c not adjacent to $\{d, e\}$

DP Over Subsets: Non-Example

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d
find opt solution on a, b, c, d not adjacent to e find opt solution on a, b, c not adjacent to e find opt solution on a, b not adjacent to e

find opt solution on a, b not adjacent to $\{c, e\}$
find opt solution on a, b, c not adjacent to $\{d, e\}$

DP Over Subsets: Non-Example

> In general, sub-problems are:
find opt solution on a_{1}, \ldots, a_{j} not adjacent to S, where S is some subset of $\left\{a_{j+1}, \ldots, a_{n}\right\}$

- there are exponentially many such sub-problems
$>$ (none of them repeat)

> So dynamic programming is not useful here...
- (we don't have enough memory to memoize / build table)

DP Over Subsets: Example

> Problem: Given a list of items of two colors, purple and gold, find the subset of maximum
 value that does not have $2+$ purples or $2+$ golds

- (previous problem with golds connected to purples)

> Easy to solve this directly
- max(0, max value of a purple) + max(0, max value of a gold)
> Dynamic programming will do the same thing....

DP Over Subsets: Example

> Apply dynamic programming....

- opt solution on $\left\{a_{1}, \ldots, a_{n}\right\}=$ better of opt solution on $\left\{a_{1}, \ldots, a_{n-1}\right\}$ and (opt solution on $\left\{a_{1}, \ldots, a_{n-1}\right\}$ to which a_{n} can be legally added) $+a_{n}$
find opt solution on a, b, c, d, e
find opt solution on a, b, c, d
find opt solution on a, b, c, d using no purples

DP Over Subsets: Example

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d
find opt solution on a, b, c, d using no purples

DP Over Subsets: Example

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d
find opt solution on a, b, c
...
find opt solution on a, b, c using no golds
find opt solution on a, b, c, d using no purples
find opt solution on a, b, c using no purples
find opt solution on a, b, c using no purples \& no golds

DP Over Subsets: Example

find opt solution on a, b, c, d, e
find opt solution on a, b, c, d
find opt solution on a, b, c, d, e
find opt solution on a, b, c, d
find opt solution on a, b, c
find opt solution on a, b, c using no golds
find opt solution on a, b using no golds
find opt solution on a, b using no purples and no golds
find opt solution on a, b, c, d using no purples
find opt solution on a, b, c using no purples
find opt solution on a, b, c using no purples \& no golds

DP Over Subsets: Example

> In general, sub-problems are: opt solution on a_{1}, \ldots, a_{i} with (no purple / no gold / no purple or gold / any)
> Dynamic programming works well here

- only 4n sub-problems
> (means we are getting many, many repeats in the recursion)
- O(n) just like the direct solution

Dynamic Programming over Subsets

> Dynamic programming can be applied to any problem on subsets

- opt solution on $\left\{a_{1}, \ldots, a_{n}\right\}=$ better of opt solution on $\left\{a_{1}, \ldots, a_{n-1}\right\}$ and (opt solution on $\left\{a_{1}, \ldots, a_{n-1}\right\}$ to which a_{n} can be legally added) $+a_{n}$
> BUT if problem is hard (e.g., NP-complete), it will be slow
- in particular, there will be too many sub-problems
> Key point: don't have to guess if DP will work
- just count the number of sub-problems you get
- if it's small, the technique works

Dynamic Programming over Subsets

> Dynamic programming can be applied to any problem on subsets

- opt solution on $\left\{a_{1}, \ldots, a_{n}\right\}=$ better of opt solution on $\left\{a_{1}, \ldots, a_{n-1}\right\}$ and (opt solution on $\left\{a_{1}, \ldots, a_{n-1}\right\}$ to which a_{n} can be legally added) $+a_{n}$
> BUT if problem is hard (e.g., NP-complete), it will be slow
- in particular, there will be too many sub-problems
> HW6 problem 1 shows the good case (stays small)
> HW6 problem 3 shows the bad / normal case

Outline for Today

> Dynamic Programming over Subsets
> Minimum Cost Flows
> Cycle Canceling Algorithm
> Augmenting Path Algorithm
> Other Algorithms

Minimum Cost Flow Problem

> Problem: Given a graph G, two nodes s and t , a flow value v , and both a capacity, u_{e}, and a cost, c_{e}, for each edge e , find the feasible flow of value v with least cost.

- (note: changing capacity from c_{e} to $u_{e} \ldots c_{e}$ is now cost of edge e)
- flow cost is defined as sum of $f_{e} c_{e}$ over all edges
> (As before, a feasible flow is one that satisfies both
- flow balance constraint: excess(n) $=0$ for each $n \neq s, t$
- capacity constraint: $f_{e} \leq c_{e}$ for each edge e)

Minimum Cost Flow Problem

> Can generalize to include lower bounds and demands

- same constructions given for feasible flow apply to min cost flow
> remove lower bounds by subtracting them out
> remove demands by adding a new source and sink
- removing lower bounds changes value of the flow but not which is minimum
> Min cost flow many useful applications...
- more examples next lecture
- start with the two premier examples

Assignment Problem

> Problem: Given two equal-length lists of objects, A and B , and a cost, $c_{a, b}$, for each pair (a, b), find the perfect matching of minimum total cost.

- a perfect matching is one that matches every a in A and every b in B
- cost of the matching is the sum of the costs of each match
> Saw (maximum) bipartite matching previously... this is minimum cost bipartite matching

Assignment Problem Example

$$
\begin{aligned}
& \text { Min cost perfect matching } \\
& M=\left\{1-2^{\prime}, 2-3^{\prime}, 3-5 ', 4-1^{\prime}, 5-4^{\prime}\right\} \\
& \operatorname{cost}(M)=8+7+10+8+11=44
\end{aligned}
$$

Assignment Problem

> Solution: model as a min cost flow problem

- start with the same modeling as for (maximal) bipartite matching
- set edge (a, b) to have cost $c_{a, b}$

Assignment Problem

> Solution: model as a min cost flow problem

- start with the same modeling as for (maximal) bipartite matching
$>$ create a graph whose nodes are the As and Bs
$>$ source s has edge to each a in A with capacity 1
$>$ target t has edge from each b in B with capacity 1
- set edge (a, b) to have cost $c_{a, b}$
- find min cost flow of value $|A|$
> (As mentioned before, bipartite cases are not really special cases... any flow graph can be made bipartite through a transformation)
- textbook only talks about this problem

Transportation Problem

> Problem: Given two equal-length lists of objects, A and B, amounts to be supplied by each a in A, amounts required by each b in B, and $a \operatorname{cost}, c_{a, b}$, for sending units from a to b, find the least cost way to meet the required demands.

- sum of the demands should equal the sum of the supplies
> Application: Find the cheapest way to ship products from warehouses (sources) to stores (sinks).

Transportation Problem

> Just a special case of min cost flow with demands where the graph happens to be bipartite

- left side = supply nodes
- right side = sink nodes
> Solution: model as a min cost flow problem with demands
- apply the transformation to remove demands

Relation to Other Flow Problems

> Max flow / feasible flow is a special case:

- setting all the costs to zero makes any flow of that value a solution
- (can use binary search to find the maximum flow value)
> Shortest path is a special case...
- (this includes negative cost edges, so no Dijkstra's algorithm)

Relation to Other Flow Problems

> Shortest path from x to y is a special case:

- given a graph with costs (gold below) but no capacities (purple)
- add a source with a capacity-1 edge to x
- add a sink with a capacity-1 edge from y
- any $0 / 1$ flow is a path - cost of the flow is the cost of that path

Relation to Other Flow Problems

> Max flow / Feasible flow is essentially a special case
> Shortest path is a special case
> Most general flow problem we will see
> Most useful flow problem for modeling
> Best solutions to both problems take $\Omega(\mathrm{nm})$ time.

- we should expect algorithms slower than O (nm)

Why is this harder? (out of scope)

> Not harder because minimizing rather than maximizing

- as we saw with cuts, we can often turn minimization into maximization
- we could equivalently talk about max-cost flow: just negate all costs
> Key issue is the introduction of a new measure: costs
- max flow directly maximizes what is being constrained (flow values)
- min cost flow introduces a separate metric (costs) that needs to be minimized and do not appear in the normal flow constraints
- look for this to see if you want to model with min cost flow vs max flow

Outline for Today

> Dynamic Programming over Subsets
> Minimum Cost Flows
> Cycle Canceling Algorithm

> Augmenting Path Algorithm
> Other Algorithms

Cycle Canceling Algorithm

> One simple algorithm:

- start with any feasible flow

- repeat as long as possible:
$>$ find a negative cost cycle in $G(f)$
e.g., use shortest path algorithm
(Bellman-Ford can detect negative cycles)
$>$ let δ be minimum capacity along the cycle
$>$ push δ more flow along cycle
> Correctness: pushing flow along a cycle preserves balance
- every node gets δ more incoming and δ more outgoing
- hence, the flow remains feasible until termination

Cycle Canceling Algorithm

> One simple algorithm:

- start with any feasible flow
- repeatedly push flow along a negative cost cycle in $G(f)$ until none exists
> Correctness: algorithm exits when flow is optimal
- i.e., feasible flow is optimal iff there are no negative cost cycles in G(f)
- if f^{\prime} were optimal, then f - f^{\prime} would be a circulation of positive cost
> i.e., if f and f^{\prime} both have excess d_{u} at u, then $f-f^{\prime}$ has excess 0 at u
- circulation decomposes into a collection of cycles
- each cycle has non-negative cost
> if any had negative cost, f^{\prime} could be improved further

Cycle Canceling Algorithm

> One simple algorithm...

- start with any feasible flow
- repeatedly push flow along a negative cost cycle in $G(f)$ until none exists
$>$ Can use Bellman-Ford to find a negative cycle in $\mathrm{O}(\mathrm{nm})$ time
- (can actually use Dijkstra instead for this... see textbook)
$>$ Total running time is $\mathrm{O}\left(\mathrm{nm}^{2} \mathrm{CU}\right)$
- where C is maximum cost and U is maximum capacity
- can prove this is $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}^{3} \log n\right)$ by choosing appropriate cycles
> use cycle with minimum average cost (see earlier lecture)

Outline for Today

> Dynamic Programming over Subsets
> Minimum Cost Flows
> Cycle Canceling Algorithm
> Augmenting Path Algorithm
> Other Algorithms

Augmenting Path Algorithm

> Second simple algorithm:

- start with zero flow
- repeat until flow value is v:
$>$ find min cost $\mathrm{s} \sim$ t path in G(f)
$>$ push 1 more unit of flow along cycle
> Idea: preserves optimality rather than feasibility
- only get feasibility upon termination
- (note that this assumes no negative cost cycles in the graph so that zero flow is optimal)

Augmenting Path Algorithm

> Second simple algorithm:

- start with zero flow
- repeatedly push 1 unit of flow along min cost s ~> t path in $G(f)$ until value is v
> Correctness: pushing flow along a path preserves balance
- uses same augmentation process as used in max flow algorithm
- all constraints are satisfied except the value of the flow equaling v

Augmenting Path Algorithm

> Second simple algorithm:

- start with zero flow
- repeatedly push 1 unit of flow along min cost $s \sim>t$ path in $G(f)$ until value is v
> Correctness: augmentation preserves optimality
- if pushing 1 flow produces non-optimal flow, $G(f)$ has a negative cost cycle
> (see discussion of earlier algorithm)
- this can only happen because new edge (v, u) appears in $G(f)$
$>$ augmenting path is $s \sim u \rightarrow v \sim>t$
$>$ cycle includes edge (v, u): $\mathrm{v} \rightarrow \mathrm{u} \sim>\mathrm{v}$
$>$ combination is shorter s \sim t path: $s \sim>u \sim>v \sim>t$ - contradiction

Augmenting Path Algorithm

> Second simple algorithm:

- start with zero flow
- repeatedly push 1 unit of flow along min cost $s \sim>t$ path in $G(f)$ until value is v
> Number of augmentations is value of flow
- as discussed with Ford-Fulkerson, value of flow $\leq n U$
$>$ Total running time is $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m} \mathrm{U}\right)$

Consequences

> Theorem: If all the capacities are integers, then there is a min cost flow where each edge flow is integral.

- note: no restriction on costs
> Proof:
- our algorithms work via augmentations
- as before, if all capacities are integers, we will increase flows by integer amounts on each iteration
- hence, the flow upon termination will be integral

Primal-Dual Algorithm (out of scope)

> Max flow algorithm repeatedly solves reachability
> Min cost flow algorithm repeatedly to shortest path
> Common: solve problem by repeatedly solving easier problem
> This is not an accident...

- both algorithms are special cases of the "primal dual algorithm" for LPs
- very useful technique for algorithms problems
> doesn't always give optimal algorithms (as these examples show)
> but usually gives an algorithm and very useful insights

Duality (out of scope)

> As with max flow, there are dual objects that give upper bounds

- in max flow those were cuts, which bound the value of any flow
> For min cost flow, the dual objects are actually distances
- can think of a cut as a special case: those in the cut are distance 0 from s and those outside the cut are distance infinity from s
- min cost flow matches the upper bound given by shortest paths in $G(f)$
> This is another reason why both max / feasible flow \& shortest path are required to understand min cost flow

Outline for Today

> Dynamic Programming over Subsets
> Minimum Cost Flows
> Cycle Canceling Algorithm
> Augmenting Path Algorithm
> Other Algorithms

Other Algorithms (out of scope)

> Not as many algorithms for min cost flow as max flow
> Most prominent (\& useful) is the network simplex method

- specialization of the simplex method for linear programming to problems defined on graphs
- accommodates additional (linear) constraints very easily
- seems to be very fast in practice
- Tarjan proved $\mathrm{O}^{*}(\mathrm{~nm})$ bound in theory also

Other Algorithms (way out of scope)

> In theory, this problem should not be any harder than max flow

- the space of feasible flows forms a convex set
> same for flows of a particular value
- min cost flow asks us to minimize a linear function over that set
- under mild assumptions, if you can solve the feasibility problem on a convex set, then you can
> (need a "separation oracle" for the set)
> proof is to apply the Ellipsoid algorithm...

