CSE 417 Network Flows (pt 4) Min Cost Flows

UNIVERSITY of WASHINGTON

Reminders

> HW6 is due Monday

- > Defined the maximum flow problem
 - find the feasible flow of maximum value
 - flow is feasible if it satisfies edge capacity and node balance constraints
- > Described the Ford-Fulkerson algorithm
 - starts with a feasible flow (all zeros) and improves it (by augmentations)
 - essentially optimal if max capacity into t is O(1)
- > Many, many other algorithms...

- > Modeling with matching, flows, & cuts
 - matching: allow multiple matches, restrict to groups
 - flows: node capacities, lower bounds, etc.
 - cuts: translate min to max, restrict allowed subsets using infinite capacities
 > one cut per subset of V \ {s, t}
- > Many of those graphs have O(1) capacities, so F-F is fast

> Theorem: value of max-flow = capacity of min-cut

- any flow value \leq any cut capacity
 - > flow has to leave via those edges
- F-F gives us a flow that matches cut value
 - > flow value = flow leaving cut flow entering cut
 - > cut edges are saturated
 - > backward edges have 0 flow

> Techniques for *efficiently* solving problems defined over subsets:

- 1. dynamic programming
- 2. minimum cuts

> Cuts: define a graph where cut capacity = value

- restrict allowed cuts using infinite capacities on edges
 > no min cut will ever include an infinite capacity edge
- examples last time were maximization, so we had cut capacity = C value
 - > minimizing capacity is maximizing value when C is constant

Outline for Today

> Dynamic Programming over Subsets

- > Minimum Cost Flows
- > Cycle Canceling Algorithm
- > Augmenting Path Algorithm
- > Other Algorithms

Dynamic Programming Over Subsets

> Dynamic programming can be applied to *any* problem on subsets

- opt solution on $\{a_1, ..., a_n\}$ = better of opt solution on $\{a_1, ..., a_{n-1}\}$ and (opt solution on $\{a_1, ..., a_{n-1}\}$ to which a_n can be legally added) + a_n
- > BUT if problem is hard (e.g., NP-complete), it will be slow
 - in particular, there will be *too many* sub-problems
- > <u>Key point</u>: don't have to guess if DP will work
 - just count the number of sub-problems you get
 - if it's small, the technique works

> Problem (Independent Set): Given a graph, find the largest subset of nodes such that no two are connected by an edge.

(d)

 (\mathbf{b})

- (sort of opposite of a matching problem)
- > Apply dynamic programming...
 - opt solution on $\{a_1, ..., a_n\}$ = better of opt solution on $\{a_1, ..., a_{n-1}\}$ and (opt solution on $\{a_1, ..., a_{n-1}\}$ to which a_n can be legally added) + a_n
 - latter is subsets of $\{a_1, ..., a_{n-1}\}$ with no neighbors a_n

find opt solution on a, b, c, d, e find opt solution on a, b, c, d ...

• • •

find opt solution on a, b, c, d not adjacent to e

find opt solution on a, b, c, d, e find opt solution on a, b, c, d find opt solution on a, b, c

• • •

...

find opt solution on a, b, c not adjacent to d

find opt solution on a, b, c, d not adjacent to e

find opt solution on a, b, c, d, e find opt solution on a, b, c, d

•••

...

find opt solution on a, b, c, d not adjacent to e find opt solution on a, b, c not adjacent to e

find opt solution on a, b, c not adjacent to {d, e}

find opt solution on a, b, c, d, e find opt solution on a, b, c, d

...

...

• • •

find opt solution on a, b, c, d not adjacent to e find opt solution on a, b, c not adjacent to e find opt solution on a, b not adjacent to e

find opt solution on a, b not adjacent to {c, e}

find opt solution on a, b, c not adjacent to {d, e}

- > In general, sub-problems are:
 - find opt solution on a₁, ..., a_j not adjacent to S, where S is some subset of {a_{j+1}, ..., a_n}
 - there are exponentially many such sub-problems> (none of them repeat)
- > So dynamic programming is not useful here...
 - (we don't have enough memory to memoize / build table)

- > Problem: Given a list of items of two colors, purple and gold, find the subset of maximum value that does not have 2+ purples or 2+ golds
 - (previous problem with golds connected to purples)
- > Easy to solve this directly
 - max(0, max value of a purple) + max(0, max value of a gold)
- > Dynamic programming will do the same thing....

(a)

(b)

(e) **DP Over Subsets: Example** (d) > Apply dynamic programming.... (c)- opt solution on $\{a_1, ..., a_n\}$ = better of opt solution on $\{a_1, ..., a_{n-1}\}$ and (opt solution on $\{a_1, ..., a_{n-1}\}$ to which a_n can be legally added) + a_n b find opt solution on a, b, c, d, e (a)find opt solution on a, b, c, d find opt solution on a, b, c, d using no purples • • •

find opt solution on a, b, c, d, e find opt solution on a, b, c, d ... find opt solution on a, b, c, d using no purples ...

W

e

(d)

(c)

(b)

(a)

find opt solution on a, b, c, d, e find opt solution on a, b, c, d find opt solution on a, b, c find opt solution on a, b, c using no golds ... find opt solution on a, b, c, d using no purples find opt solution on a, b, c using no purples ... find opt solution on a, b, c using no purples & no golds ...

(e)

d

find opt solution on a, b, c, d, e find opt solution on a, b, c, d find opt solution on a, b, c find opt solution on a, b, c using no golds find opt solution on a, b using no purples and no golds ... find opt solution on a, b, c, d using no purples find opt solution on a, b, c using no purples ... find opt solution on a, b, c using no purples ... find opt solution on a, b, c using no purples & no golds ... (e)

d

 (\mathbf{c})

 (\mathbf{b})

a

> In general, sub-problems are:

opt solution on a_1 , ..., a_i with (no purple / no gold / no purple or gold / any)

- > Dynamic programming works well here
 - only 4n sub-problems

> (means we are getting many, many repeats in the recursion)

- O(n) just like the direct solution

(e)

 \mathbf{d}

(c)

 (\mathbf{b})

(a)

Dynamic Programming over Subsets

> Dynamic programming can be applied to *any* problem on subsets

- opt solution on $\{a_1, ..., a_n\}$ = better of opt solution on $\{a_1, ..., a_{n-1}\}$ and (opt solution on $\{a_1, ..., a_{n-1}\}$ to which a_n can be legally added) + a_n
- > BUT if problem is hard (e.g., NP-complete), it will be slow
 - in particular, there will be *too many* sub-problems
- > <u>Key point</u>: don't have to guess if DP will work
 - just count the number of sub-problems you get
 - if it's small, the technique works

Dynamic Programming over Subsets

- > Dynamic programming can be applied to *any* problem on subsets
 - opt solution on $\{a_1, ..., a_n\}$ = better of opt solution on $\{a_1, ..., a_{n-1}\}$ and (opt solution on $\{a_1, ..., a_{n-1}\}$ to which a_n can be legally added) + a_n
- > BUT if problem is hard (e.g., NP-complete), it will be slow
 - in particular, there will be *too many* sub-problems
- > HW6 problem 1 shows the good case (stays small)
- > HW6 problem 3 shows the bad / normal case

Outline for Today

- > Dynamic Programming over Subsets
- > Minimum Cost Flows
- > Cycle Canceling Algorithm
- > Augmenting Path Algorithm
- > Other Algorithms

Minimum Cost Flow Problem

- > Problem: Given a graph G, two nodes s and t, a *flow value* v, and both a capacity, u_e, and a cost, c_e, for each edge e, find the feasible flow of value v with least cost.
 - (note: changing capacity from c_e to u_e ... c_e is now cost of edge e)
 - <u>flow cost</u> is defined as sum of $f_e c_e$ over all edges
- > (As before, a feasible flow is one that satisfies both
 - flow balance constraint: excess(n) = 0 for each $n \neq s$, t
 - capacity constraint: $f_e \le c_e$ for each edge e)

Minimum Cost Flow Problem

- > Can generalize to include lower bounds and demands
 - same constructions given for feasible flow apply to min cost flow
 - > remove lower bounds by subtracting them out
 - > remove demands by adding a new source and sink
 - removing lower bounds changes value of the flow but not which is minimum
- > Min cost flow many useful applications...
 - more examples next lecture
 - start with the two premier examples

Assignment Problem

- > Problem: Given two equal-length lists of objects, A and B, and a cost, c_{a,b}, for each pair (a, b), find the perfect matching of minimum total cost.
 - a perfect matching is one that matches every a in A and every b in B
 - cost of the matching is the sum of the costs of each match
- > Saw (maximum) bipartite matching previously... this is minimum cost bipartite matching

Assignment Problem Example

<u>Min cost perfect matching</u> M = { 1-2', 2-3', 3-5', 4-1', 5-4' } cost(M) = 8 + 7 + 10 + 8 + 11 = 44

Assignment Problem

> **Solution**: model as a min cost flow problem

- start with the same modeling as for (maximal) bipartite matching
- set edge (a, b) to have cost $c_{a,b}$

Assignment Problem

> **Solution**: model as a min cost flow problem

- start with the same modeling as for (maximal) bipartite matching
 - > create a graph whose nodes are the As and Bs
 - > source s has edge to each a in A with capacity 1
 - > target t has edge from each b in B with capacity 1
- set edge (a,b) to have cost $c_{a,b}$
- find min cost flow of value |A|
- > (As mentioned before, bipartite cases are not really special cases... any flow graph can be made bipartite through a transformation)
 - textbook <u>only</u> talks about this problem

Transportation Problem

> Problem: Given two equal-length lists of objects, A and B, amounts to be supplied by each a in A, amounts required by each b in B, and a cost, c_{a,b}, for sending units from a to b, find the least cost way to meet the required demands.

- sum of the demands should equal the sum of the supplies

> Application: Find the cheapest way to ship products from warehouses (sources) to stores (sinks).

Transportation Problem

- > Just a special case of min cost flow with demands where the graph happens to be bipartite
 - left side = supply nodes
 - right side = sink nodes
- > **Solution**: model as a min cost flow problem with demands
 - apply the transformation to remove demands

Relation to Other Flow Problems

- > Max flow / feasible flow is a special case:
 - setting all the costs to zero makes any flow of that value a solution

- (can use binary search to find the maximum flow value)
- > Shortest path is a special case...
 - (this includes negative cost edges, so no Dijkstra's algorithm)

Relation to Other Flow Problems

> Shortest path from x to y is a special case:

- given a graph with costs (gold below) but no capacities (purple)
- add a source with a capacity-1 edge to x
- add a sink with a capacity-1 edge from y
- any 0/1 flow is a path cost of the flow is the cost of that path

Relation to Other Flow Problems

- > Max flow / Feasible flow is essentially a special case
- > Shortest path is a special case _____ no capacities
- > Most general flow problem we will see
- > Most useful flow problem for modeling
- > Best solutions to both problems take $\Omega(nm)$ time.
 - we should expect algorithms slower than O(nm)

no costs

Why is this harder? (out of scope)

> Not harder because minimizing rather than maximizing

- as we saw with cuts, we can often turn minimization into maximization
- we could equivalently talk about max-cost flow: just <u>negate</u> all costs
- > Key issue is the introduction of a new measure: costs
 - max flow directly maximizes what is being constrained (flow values)
 - min cost flow introduces a separate metric (costs) that needs to be minimized and do not appear in the normal flow constraints
 - look for this to see if you want to model with min cost flow vs max flow

Outline for Today

> Dynamic Programming over Subsets

- > Minimum Cost Flows
- > Cycle Canceling Algorithm
- > Augmenting Path Algorithm
- > Other Algorithms

Cycle Canceling Algorithm

> One simple algorithm:

- start with any feasible flow
- repeat as long as possible:
 - > find a negative cost cycle in G(f)
 - > let δ be minimum capacity along the cycle
 - > push δ more flow along cycle
- > Correctness: pushing flow along a cycle preserves balance
 - every node gets δ more incoming and δ more outgoing
 - hence, the flow remains feasible until termination

- e.g., use max flow algorithm
- e.g., use shortest path algorithm (Bellman-Ford can detect negative cycles)

Cycle Canceling Algorithm

- > One simple algorithm:
 - start with any feasible flow
 - repeatedly push flow along a negative cost cycle in G(f) until none exists
- > Correctness: algorithm exits when flow is optimal
 - i.e., feasible flow is optimal iff there are no negative cost cycles in G(f)
 - if f' were optimal, then f f' would be a *circulation* of positive cost
 i.e., if f and f' both have excess d_u at u, then f f' has excess 0 at u
 - circulation decomposes into a collection of cycles
 - each cycle has non-negative cost
 - > if any had negative cost, f' could be improved further

Cycle Canceling Algorithm

- > One simple algorithm...
 - start with any feasible flow
 - repeatedly push flow along a negative cost cycle in G(f) until none exists
- > Can use Bellman-Ford to find a negative cycle in O(nm) time
 - (can actually use Dijkstra instead for this... see textbook)
- > Total running time is O(nm²CU)
 - where C is maximum cost and U is maximum capacity
 - can prove this is $O(n^2 m^3 \log n)$ by choosing appropriate cycles
 - > use cycle with minimum *average* cost (see earlier lecture)

Outline for Today

- > Dynamic Programming over Subsets
- > Minimum Cost Flows
- > Cycle Canceling Algorithm
- > Augmenting Path Algorithm
- > Other Algorithms

- > Second simple algorithm:
 - start with zero flow
 - repeat until flow value is v:
 - > find <u>min cost</u> s ~> t path in G(f)
 - > push 1 more unit of flow along cycle
- > Idea: preserves optimality rather than feasibility
 - only get feasibility upon termination
 - (note that this assumes no negative cost cycles in the graph so that zero flow is optimal)

- > Second simple algorithm:
 - start with zero flow
 - repeatedly push 1 unit of flow along min cost s ~> t path in G(f) until value is v
- > Correctness: pushing flow along a path preserves balance
 - uses same augmentation process as used in max flow algorithm
 - $-\,$ all constraints are satisfied except the value of the flow equaling v

- > Second simple algorithm:
 - start with zero flow
 - repeatedly push 1 unit of flow along min cost s ~> t path in G(f) until value is v
- > Correctness: augmentation preserves optimality
 - if pushing 1 flow produces non-optimal flow, G(f) has a negative cost cycle
 - > (see discussion of earlier algorithm)
 - this can only happen because new edge (v, u) appears in G(f)
 - > augmenting path is s ~> u \rightarrow v ~> t
 - > cycle includes edge (v, u): v \rightarrow u \sim > v
 - > combination is shorter s ~> t path: s ~> u ~> v ~> t contradiction

- > Second simple algorithm:
 - start with zero flow
 - repeatedly push 1 unit of flow along min cost s ~> t path in G(f) until value is v
- > Number of augmentations is value of flow
 - as discussed with Ford-Fulkerson, value of flow \leq nU
- > Total running time is O(n² m U)

Consequences

- > **Theorem**: If all the capacities are integers, then there is a min cost flow where each edge flow is *integral*.
 - note: no restriction on costs

> **Proof**:

- our algorithms work via augmentations
- as before, if all capacities are integers, we will increase flows by integer amounts on each iteration
- hence, the flow upon termination will be integral

Primal-Dual Algorithm (out of scope)

- > Max flow algorithm repeatedly solves reachability
- > Min cost flow algorithm repeatedly to shortest path
- > Common: solve problem by repeatedly solving easier problem
- > This is not an accident...
 - both algorithms are special cases of the "primal dual algorithm" for LPs
 - very useful technique for algorithms problems
 - > doesn't always give optimal algorithms (as these examples show)
 - > but usually gives an algorithm and very useful insights

Duality (out of scope)

> As with max flow, there are dual objects that give upper bounds

- in max flow those were <u>cuts</u>, which bound the value of any flow
- > For min cost flow, the dual objects are actually *distances*
 - can think of a cut as a special case: those in the cut are distance 0 from s and those outside the cut are distance infinity from s
 - min cost flow matches the upper bound given by shortest paths in G(f)
- > This is another reason why both max / feasible flow & shortest path are required to understand min cost flow

Outline for Today

- > Dynamic Programming over Subsets
- > Minimum Cost Flows
- > Cycle Canceling Algorithm
- > Augmenting Path Algorithm

> Other Algorithms 🤇 🧲 💳

Other Algorithms (out of scope)

> Not as many algorithms for min cost flow as max flow

> Most prominent (& useful) is the network simplex method

- specialization of the simplex method for linear programming to problems defined on graphs
- accommodates additional (linear) constraints very easily
- seems to be very fast in practice
- Tarjan proved O*(nm) bound in theory also

Other Algorithms (way out of scope)

> In theory, this problem should not be any harder than max flow

- the space of feasible flows forms a convex set
 - > same for flows of a particular value
- min cost flow asks us to minimize a linear function over that set
- under mild assumptions, if you can solve the feasibility problem on a convex set, then you can
 - > (need a "separation oracle" for the set)
 - > proof is to apply the Ellipsoid algorithm...