
CSE 417
Network Flows (pt 3)
Modeling with Min Cuts



> HW6 is due on Friday
– start early
– bug fixed on line 33 of OptimalLineup.java:

> change “true” to “false”

Reminders



> Defined the maximum flow problem
– find the feasible flow of maximum value
– flow is feasible if it satisfies edge capacity and node balance constraints

> Described the Ford-Fulkerson algorithm
– starts with a feasible flow (all zeros) and improves it (by augmentations)
– essentially optimal if max capacity into t is O(1)
– have not yet proven it correct...

> Many, many other algorithms...

Review of last two lectures



> Modeling as matching problems
– covering with dominos: matches adjacent squares, two colors means bipartite
– token placing: a token is a match between row and column
– processor scheduling: match programs to time slots

> number of matches to one time slot limited by number of processors

> Modeling directly with flows
– escape problem: edge- and node-disjoint paths (latter using node capacities)
– airline scheduling: flow problem with capacity lower bounds

> easiest to handle as a flow feasibility problem...

> Many of those graphs have O(1) capacities

Review of last two lectures
for	bipartite	matching:
multiple	matches,	group	restrictions

for	network	flows:
node	capacities,	lower	bounds



> Equivalent Formulations
> Max-Flow Min-Cut Theorem
> Network Connectivity
> Project Selection
> Image Segmentation
> Other Min-Cut Algorithms

Outline for Today



> Problem: Given a graph, two nodes s & t, and edge capacities, 
determine whether there is a feasible flow of value k.

> Simplified (“decision version”) of max flow.
– rather than finding the maximum value, just determine if it is at least k

Flow Feasibility



> Can generalize this to allow lower bounds...

> Problem: Given a graph, two nodes s & t, and for each edge e, 
lower and upper bounds (0 ≤ le ≤ ue), determine whether there is 
a feasible flow of value k.
– now feasibility means:

> edge constraints: le ≤ fe ≤ ue for each edge e
> node balance constraints

Flow Feasibility with Lower Bounds



> Can generalize this to allow arbitrary flow demands...
– i.e., multiple sources and sinks

> Problem: Given a graph, a demand du for each node u, and for 
each edge e, lower and upper bounds (0 ≤ le ≤ ue), determine 
whether there is a feasible flow.
– no s & t or k
– now feasibility means:

> edge constraints: le ≤ fe ≤ ue for each edge e
> node balance constraints: excess at u = du

Flow Feasibility with
Lower Bounds and Demands



> Problem: Given a graph, a demand du for each node u, and for 
each edge e, lower and upper bounds (0 ≤ le ≤ ue), determine 
whether there is a feasible flow.

> Pure generalization of previous problem:
– choose du = 0 for all u ≠ s, t

> constraint that excess at u = du matches original node balance constraints
– choose dt = k and ds = -k

> constraint that excess at t = dt means flow value is k

Flow Feasibility with
Lower Bounds and Demands



> Lower bounds do not make the problem any harder...
– we can easily remove them

> For any feasible flow f, consider f’ = f – l instead
– i.e., f’e = fe – le (or equivalently, fe = le + f’e)
– f’ is the flow amount above the lower bound

> Need to reduce to a problem involving f’ only...
– if we can do so, we have removed the lower bounds

> f’ is only constrained by f’ ≥ 0

Flow Feasibility with Demands
but without Lower Bounds



> For any feasible flow f, consider f’ = f – l instead
– i.e., f’e = fe – le (or equivalently, fe = le + f’e)
– f’ is the flow amount above the lower bound

> What constraints on f’ tell us that f would be feasible?
– capacity: subtract le from le ≤ fe ≤ ue to get 0 ≤  f’e ≤ ue – le

> have removed the lower bound
– node demands change...
– for every edge e = (u,v):

> need to decrease dv by le to account for removal of le flow from edge
> need to increase du by le

Flow Feasibility with Demands
but without Lower Bounds

end	up	with	demands	even	if	none	initially...



> Demands also do not make the problem any harder...
– we can easily remove them...

(taking us back to the original feasibility problem)

> Recall:
– this problem has no source & sink but has demands
– original problem has source & sink but no demands

Flow Feasibility without Demands



> Demands also do not make the problem any harder...
– we can easily remove them...

> Introduce a new sink node t
– edge (v,t) to each node v with dv > 0
– set capacity of this edge to dv

– letting excess dv escape to t means flow is now balanced at v

> Introduce a new source node s
– edge (s,u) to each node u with du < 0
– set capacity of this edge to -du

Flow Feasibility without Demands



> Demands also do not make the problem any harder...
– we can easily remove them...

Flow Feasibility without Demands

0

1

10

1

1

0

s

t

1

1 1

1



> Demands also do not make the problem any harder...

> Introduce a new sink node t
– edge (v,t) to each node v with dv > 0
– set capacity of this edge to dv

> Introduce a new source node s
– edge (s,u) to each node u with du < 0
– set capacity of this edge to -du

> Original problem is feasible iff this has flow saturating t

Flow Feasibility without Demands



> We showed that flow feasibility is no harder with lower bounds

> What about about maximum flow?
– flow feasibility (without lower bounds) is no harder than max flow
– but is it really any easier?

> Q: How do we solve max flow using library for flow feasibility?
> A: Binary search

> Thus, we can solve max flow with lower bounds too

Maximum Flow with
Lower Bounds and Demands



> We showed that flow feasibility is no harder with lower bounds

> Maximum flow is no harder than flow feasibility
– just gain a log factor from the binary search
– note: this is only truly polynomial because of binary search

> a linear search would only be pseudo-polynomial

> This is an important general fact in theoretical CS
– we will use it again in the theory of NP-completeness
– there, we will only consider decision problems

> as we just saw, those aren’t any really easier than optimization

Maximum Flow with
Lower Bounds and Demands



> Have seen:
– node splitting (for node capacities)
– removal of lower bounds

> Other possible transformations:
– arc reversal (removes with negative capacities)
– removing arc capacities all together

> moves capacity constraints into demands / flow balance constraints

Other Transformations



> Equivalent Formulations
> Max-Flow Min-Cut Theorem
> Network Connectivity
> Project Selection
> Image Segmentation
> Other Min-Cut Algorithms

Outline for Today



> Definition: An s-t cut in a graph is any subset of the nodes that 
includes s but not t.

s-t Cuts

s t



> Definition: An s-t cut in a graph is any subset of the nodes that 
includes s but not t.

> Definition: The capacity of an s-t cut
is the sum of all the capacities of all
edges leaving the cut
– i.e., edges (u,v) with u in the cut and v not in the cut

s-t Cuts

s t



> Proposition: value of any feasible flow is ≤ capacity of any cut

> Intuition: flow from source has to cross the cut to get to the sink 
and the capacity of the cut is the most flow that can cross it.
– flow across would equal capacity if every outgoing edge was saturated and

every incoming edge had no flow at all

Cuts and Flows

s t



> Proposition: value of any feasible flow is ≤ capacity of any cut

> Proof:
– let S = sum of –excess(u) over all u’s in the cut
– this is –excess(s) = value of flow since –excess(u) = u for u ≠ s

– recall that excess(u) = incoming flow at u – outgoing flow at u
– sum of –excess(u) adds outgoing flow from every node

and subtracts incoming flow at every node
– every edge (u,v) with u & v in cut cancels out

> added once and subtracted once
> leaves only edges with only u in cut or only v in cut...

Cuts and Flows



> Proposition: value of any feasible flow is ≤ capacity of any cut

> Proof:
– let S = sum of –excess(u) over all u’s in the cut
– this is –excess(s) = value of flow since –excess(u) = u for u ≠ s

– this is sum of outgoing flows from cut minus incoming flows to cut
> adds flow on (u,v) if u in cut and v not
> subtracts flow on (v,u)

Cuts and Flows



> Proposition: value of any feasible flow is ≤ capacity of any cut

> Proof:
– let S = sum of –excess(u) over all u’s in the cut
– this is –excess(s) = value of flow since –excess(u) = u for u ≠ s

– this is sum of outgoing flows from cut minus incoming flows to cut

– outgoing flows are at most cut capacity
– incoming flows are at least 0
– so S = outgoing flows – incoming flows ≤ capacity of the cut

Cuts and Flows



> Theorem: max value of any flow = min capacity of any cut

> We just saw that we have ≤ for any flow and any cut
– in particular, we have ≤ for the max flow and the min cut

> Remains only to show that there is some flow whose value 
equals that of some cut...
– i.e. value of some flow = capacity of some cut,

which means max value of any flow ≥ min capacity of any cut
– if x ≤ y and x ≥ y, then x = y

Max-Flow Min-Cut Theorem



> Remains only to show that there is some flow whose value equals 
that of some cut...

> Get the flow and the cut from Ford-Fulkerson!
– in particular, let the cut be all nodes reachable from s in G(f) at termination

> this includes s and not t
– as we saw earlier, value of the flow (S) is the sum of the flow on outgoing edges 

from the cut minus the flow on incoming edges to the cut
– every outgoing edge (u,v) must be saturated

> otherwise, G(f) would include (u,v) so v would be reachable

Max-Flow Min-Cut Theorem



> Remains only to show that there is some flow whose value equals 
that of some cut...

> Get the flow and the cut from Ford-Fulkerson!
– as we saw earlier, value of the flow (S) is the sum of the flow on outgoing edges 

from the cut minus the flow on incoming edges to the cut
– every outgoing edge (u,v) must be saturated

> otherwise, G(f) would include (u,v) so v would be reachable
– every incoming edge (v,u) must have zero flow

> otherwise, G(f) would include (u,v) as a backward edge
– so flow value = sum of outgoing edge capacities = cut capacity

Max-Flow Min-Cut Theorem



> That completes proof of the theorem, but we also get...

> Corollary (of proof): Ford-Fulkerson is correct
– terminates with a flow whose value is equal to that of some cut
– BUT we know that every flow has value ≤ that of min cut
– so this must be the minimum cut

> if the capacity of the min cut was smaller, our flow value would be bigger (impossible)
– and since our flow value is = min cut, it is the max flow

> if the max flow was larger,
it would be bigger than the min cut (impossible)

Ford-Fulkerson Correctness



> The fact that value of max flow = capacity of min cut is a special 
case of linear programming duality
– LP is the optimization problem of maximizing a linear function subject to a 

collection of linear inequalities
– value of the flow is a linear function
– edge capacity & node balance constraints are linear inequalities

> (that is, linear in the variables, which are the fe’s)

> (In fact, these are special case of duality in
convex programming as well...
– those have more caveats when “=“ holds)

Duality (out of scope)



> Equivalent Formulations
> Max-Flow Min-Cut Theorem
> Network Connectivity
> Project Selection
> Image Segmentation
> Other Min-Cut Algorithms

Outline for Today



> Problem: Given a graph and nodes x & y, what is the minimum 
number of edges that can be removed to disconnect x from y?

> Application: how many fiber optic cables would have to fail to 
remove network connectivity between two Google data centers?

Edge Connectivity



> Theorem (Menger, ‘27): The minimum number of edges that can 
be removed to disconnect x from y is equal to the maximum 
number of edge-disjoint paths from x to y.

> Proof:
– apply max-flow min-cut theorem to graph with s = x, y = t, and

every edge capacity set to 1
– max flow is a set of edge disjoint paths
– any set of edges that disconnects x from y must include one

edge from each of these
– min cut is such a set of edges

Menger’s Theorem



> Theorem (Menger, ‘27): The minimum number of edges that can 
be removed to disconnect x from y is equal to the maximum 
number of edge-disjoint paths from x to y.

> This was actually proven before the max-flow min-cut theorem.

> It also has a vertex connectivity version

Menger’s Theorem



> Problem: Given a graph and nodes x & y, what is the minimum 
number of nodes that can be removed to disconnect x from y?

> Application: how many network switches would have to fail to 
remove network connectivity between two Google data centers?

Node Connectivity



> Theorem: The minimum number of nodes that can be removed 
to disconnect x from y is equal to the maximum number of node-
disjoint paths from x to y.

> Proof:
– apply max-flow min-cut theorem to the graph with node splitting
– details left as an exercise...

Menger’s Theorem 2



> Equivalent Formulations
> Max-Flow Min-Cut Theorem
> Network Connectivity
> Project Selection
> Image Segmentation
> Other Min-Cut Algorithms

Outline for Today



> Problem: Given a collection of n projects, projected revenue pu
for each project u, and a set of prerequisites {(u,v)}, where the 
element (u,v) says that project v must also be completed if u is, 
find the set of allowed projects with maximum total revenue.
– “allowed” means, if u is included and (u,v) is a prerequisite, then v is included

> Note that revenues can be positive or negative
– may want to include a negative revenue project if it allows you to then 

include another project with large positive revenue

Project Selection



> Search space is all subsets of the project list
– obvious brute force will be of little use
– (we have seen that dynamic programming often works here...)

> Given a problem described that way, see if the values associated 
with each subset can be created as cuts in a graph
– if so, then we can find the minimum value by finding the min cut
– to do so, first get a max flow, then the set of reachable nodes in G(f)

gives the set of nodes in the cut
> (can get that in O(n) time once you’ve solved the flow problem)
> note: our analysis applies even if non F-F algorithm gives flow!

Minimization Problems over Subsets



> We already have one graph structure given in the problem
– the set of prerequisites gives edges in a graph where nodes are projects

> textbook calls this the “prerequisite graph”

Project Selection

{v,w,x} is allowed

whereas {v,x} would not be



> If we have a prerequisite pair (u,v), we can
force the cut to include v when u is in the cut
by setting the capacity of the edge (u, v) to infinity
– (flow will be finite as long as there exists some cut with no infinite edges)
– (choice of infinities to force minimum cut used in node connectivity too)

> The minimum cut will now only include allowed subsets,
but we still need to make the cut capacity match the
value given in the problem...

Project Selection



> Note that we are trying to minimize the cut,
whereas the problem said to maximize revenue

> Choose the value of the cut to be C – (revenue of included)
for some constant C
– maximizing this is the same as minimizing revenue of included projects
– we can pick C to be any constant we want

> (i.e., something independent of what projects are included vs excluded)

Project Selection



> Add a source node s with edges to every project,
where (s,u) has capacity max(0, pu)
– if u is excluded and has revenue pu > 0,

then (s,u) adds pu into the cut capacity

> Add a target node t with edges from every project,
where (u,t) has capacity max(0, -pu)
– if u is included and has revenue pu < 0,

then (u, t) adds -pu into the cut capacity

> Value of cut = sum of positive excluded + sum of negative included

Project Selection



Project Selection cut value =
pu + py – pw – px =

positive
excluded

negative
included



> Value of cut = sum of positive excluded + sum of negative included

> Add and subtract sum of positive included...

> Value of cut = sum of positive excluded + sum of positive included 
– sum of positive included + sum of negative included
= sum of positive excluded + sum of positive included
– sum of positive included – sum of -negative included

Project Selection



> Value of cut = sum of positive excluded + sum of positive included
– sum of positive included – sum of -negative included

= (sum of all positives) – (sum of included)

> Sum of all positives is a constant
> Minimizing constant – (revenue of included) is

equivalent to maximizing revenue of included

Project Selection



> Equivalent Formulations
> Max-Flow Min-Cut Theorem
> Network Connectivity
> Project Selection
> Image Segmentation
> Other Min-Cut Algorithms

Outline for Today



> Problem: For each pixel in an image, we are given the 
probability that it is foreground vs background. We are also 
given, for each pair of adjacent pixels, the probability that one is 
foreground and the other is not. Find the separation of pixels 
into foreground vs background that likelihood.
– let ai be the probability that pixel i is foreground and

let bi be the probability that it is background
– let pi,j be a penalty when pixel i is foreground while j is background
– likelihood that subset A are foreground and B are back is

(sum ai for i in A) + (sum of bi for i in B) –
(sum of pi,j for i in A and j in B)

Image Segmentation



Image Segmentation

from	http://www.maths.lth.se/matematiklth/personal/petter/rapporter/graph.pdf



> Problem is trying to maximize likelihood, whereas we want to 
minimize the value of the cut....

> We need to rewrite this as constant – likelihood:
– choose the constant to be (sum of ai) + (sum of bi)
– then constant – likelihood =

(sum of ai for i in B) +
(sum of bi for i in A) +
(sum of pi,j for i in A and j in B)

– now that every term is positive, it should be easy...

Image Segmentation



> Intuition: source connected to those in foreground, and
target connected to those in background

Image Segmentation



> cut capacity = (sum of ai for i in B) + (sum of bi for i in A) +
(sum of pi,j for i in A and j in B)

Image Segmentation



> Minimizing the capacity of this cut is maximizing the likelihood of 
the corresponding (A, B) split.

Image Segmentation



> Equivalent Formulations
> Max-Flow Min-Cut Theorem
> Network Connectivity
> Project Selection
> Image Segmentation
> Other Min-Cut Algorithms

Outline for Today



> The cut perspective also lead to other algorithms...

> Karger–Stein algorithm computes value of min-cut in O*(n2) time
– (ignoring log n factors)
– the graph is dense, this is faster than flow algorithms by factor of n

> The algorithm is randomized...
– basic version randomly contracts an edge until 2 vertices remain

> two nodes at ends of the edge are joined into one
> edges that become parallel are replaced with sum of capacities

– the cut is just the capacity of the edge between final vertices

Other Min-Cut Algorithms
(out of scope)



> The cut perspective also lead to other algorithms...

> Karger–Stein algorithm computes value of min-cut in O*(n2) time
– (ignoring log n factors)
– the graph is dense, this is faster than flow algorithms by factor of n

> The algorithm is pretty simple
> Proof of correctness of the algorithm is not simple

Other Min-Cut Algorithms
(out of scope)


