
CSE 417
Network Flows (pt 2)
Modeling with Max Flow

> HW6 is due on Friday
– start early
– may take time to figure out the sub-structure

Reminders

> Defined the maximum flow problem
– find the feasible flow of maximum value
– flow is feasible if it satisfies edge capacity and node balance constraints

> Described the Ford-Fulkerson algorithm
– starts with a feasible flow (all zeros) and improves it (by augmentations)
– non-greedy: augmentations can undo flow added by previous augmentations
– essentially optimal if max capacity on edges into t is O(1)
– have not yet proven it correct...

> Many, many other algorithms...

Review of last lecture

> Escape Problem
> Covering with Dominos
> Token Placing
> Processor Scheduling
> Airline Scheduling

Outline for Today

> Problem: Given a set of points (x1, y1), ..., (xn, ym) on an n x n grid,
determine whether there exists a set of paths along grid lines
from each of the points to the boundary that do not intersect

Escape Problem

Escape Problem Example

This example has a solution:

from	“Introduction	to	Algorithms”

Escape Problem Example 2

This example does not:

from	“Introduction	to	Algorithms”

Escape Problem Example 3

Another with a solution:

from	http://jeffe.cs.illinois.edu/teaching/algorithms/notes/24-maxflowapps.pdf

> Problem: Bank robbers are planning to rob a number of banks
around the city at exactly the same time. They will be pursued by
the police as they flee. Find escape routes for the robbers that do
not use any of the same roads or intersections.
– (one robber doesn’t want to run into the police chasing another robber)

> Other assumptions:
– city map is given as a graph with intersections as nodes and roads as edges
– can assume all the banks are at the corners of intersections

Robber Problem

> Generalization of the previous problem...

> Here’s what it might like look like if the streets are a grid:

> (from an ACM programming contest ~1997)

Robber Problem

> Solve by modeling with max flow:
– roads become edges (in both direction) with capacity 1

Robber Problem

11

1

1

1

1 1

1

1 1

1 1

> Solve by modeling with max flow:
– roads become edges (in both direction) with capacity 1
– source node has edges to each bank with capacity 1

Robber Problem

s

11

1

1

1
1 1

1

1 1

1 1

1

1

> Solve by modeling with max flow:
– roads become edges (in both direction) with capacity 1
– source node has edges to each bank with capacity 1
– edges from boundary nodes to the sink with capacity 1

Robber Problem

s t

11

1

1

1
1 1

1

1 1

1 1

1

1 1

1

> Solve by modeling with max flow

> Has a solution iff the max flow equals the number of robbers

Robber Problem

s t

11

1

1

1
1 1

1

1 1

1 1

1

1 1

1

> Solve by modeling with max flow

> Has a solution iff the max flow equals the number of robbers:
– can assume flow is {0, 1} on each edge — (by F-F)
– flow on each edge (s,u) gives a path from u to the boundary...

> flow into u on (s,u) leaves on some edge (u,v)
> flow into v on (u,v) leaves on some edge (v,w)
> can only stop with an edge (z,t), and z is a boundary node by construction

– two paths using the same edge would violate edge capacity

Robber Problem

s t

11

1

1

1
1 1

1

1 1

1 1

1

1 1

1

(not	as	obvious	as	it	sounds...)

> Solve by modeling with max flow

> Has a solution iff the max flow equals the number of robbers

> Q: What’s missing?
> A: Two paths could use the same intersection!

– as long as the paths enter and leave via different edges, it would be allowed
– somehow need to put a capacity on nodes also

Robber Problem

s t

11

1

1

1
1 1

1

1 1

1 1

1

1 1

> These are easy to add to any max flow problem

> Consider any node...
– it has some number of incoming edges and outgoing edges

Node Capacity Constraints

.

.

.

.

.

.

> These are easy to add to any max flow problem

> Consider any node...
– split it into two parts
– one part for incoming edges and one for outgoing edges

Node Capacity Constraints

.

.

.

.

.

.

> These are easy to add to any max flow problem

> Consider any node...
– split it into two parts
– one part for incoming edges and one for outgoing edges
– add edge between them with capacity for the node

Node Capacity Constraints

.

.

.

.

.

.

cn

> These are easy to add to any max flow problem

> Consider any node...
– split it into two parts
– one part for incoming edges and one for outgoing edges
– add edge between them with capacity for the node

> All flow through the node now goes through this internal edge
> That allows us to limit the total flow using the node

– node balance constraint is preserved...
– flow balance constraint on the two nodes tell us:

flow into the first node = flow along internal edge = flow out of the second node

Node Capacity Constraints

> Solve by modeling with max flow
– previous construction
– plus node capacities of 1

> Has a solution iff the max flow equals the number of robbers
– already proved that paths must be edge-disjoint
– node capacity means paths must be node-disjoint as well

Robber Problem

s t

11

1

1

1
1 1

1

1 1

1 1

1

1 1

> Solve by modeling with max flow
– previous construction
– plus node capacities of 1

> Has a solution iff the max flow equals the number of robbers
– we have shown that this properly models the robber problem:

> every solution to the robber problem corresponds to a flow of value #robbers
> every 0/1 flow of value #robbers encodes escape paths for all robbers

> Ford-Fulkerson runs in O(nm) time since U = 1

Robber Problem

s t

11

1

1

1
1 1

1

1 1

1 1

1

1 1

> Escape Problem
> Covering with Dominos
> Token Placing
> Processor Scheduling
> Airline Scheduling

Outline for Today

> Problem: Given a checker board with some squares deleted,
find a way to cover the board with dominos.
– each domino covers two adjacent squares (vertical or horizontal)

Covering with Dominos

> Problem: Given a checker board with some squares deleted,
find a way to cover the board with dominos.

Covering with Dominos Example

from	http://jeffe.cs.illinois.edu/teaching/algorithms/notes/24-maxflowapps.pdf

> Observation: This looks like a matching problem
– each domino connects a pair of adjacent squares

> Unfortunately, it looks like a general matching problem
– graph has a node for each square and edges between (≤ 4) adjacent ones
– as noted before, the problem is harder than max flow on a general graph

Covering with Dominos

> Observation: This looks like a general matching problem

> Could try putting every square on both the left & right side
– allow matching squares on left and right only to adjacent ones (not selves)

> BUT the matchings would not always be solutions...
– e.g., square 1 on the left might be matched with square i,

but square 1 on the right might be matched with square j ≠ i

Covering with Dominos: False Start

> Observation: This looks like a general matching problem

> In fact, this is a bipartite matching problem!

> Q: What are the two parts?
> A: The dark squares and the light squares

– each domino touches exactly one of each

Covering with Dominos

> Escape Problem
> Covering with Dominos
> Token Placing
> Processor Scheduling
> Airline Scheduling

Outline for Today

> Problem: Given a checker board with some squares deleted,
find a set of locations to place tokens such that there is exactly
one token in every row and one in every column.

Token Placing

from	http://jeffe.cs.illinois.edu/teaching/algorithms/notes/24-maxflowapps.pdf

> First thought: what the heck even is this?

> Second thought: turn row / col restrictions into flow constraints?

Token Placing: False Start

s

squares rows

t

1

1

1

> First thought: what the heck even is this?

> Second thought: turn row / col restrictions into flow constraints?
– can use that to ensure only one in each row OR in each column

> (a useful idea we can use elsewhere)
– BUT how can we do both at once?

> lose track of what column it came from when we flow into the row nodes
> could put 2 units of flow into a square, one for row & one for col,

but there is no guarantee that the solution uses 2 units
– doesn’t seem to work...

Token Placing: False Start

> Hint: this is a bipartite matching problem

> Q: Matching what and what?
> A: Between rows and columns

– (row, col) pair = square on the board
– white squares show which (row, col) pairs are allowed
– matching because each row & col can only be used once
– has a solution if there is a matching that uses all n rows & cols

> the matching says on what squares you place tokens

Token Placing

> Escape Problem
> Covering with Dominos
> Token Placing
> Processor Scheduling
> Airline Scheduling

Outline for Today

> Problem: Given n programs & m (single-core) processors along with:
– times after which the programs can be started
– times by which the programs must be completed
– total processing time to complete the program
Find a schedule for running the programs on processors that meets the deadlines.

> Note that programs can be stopped, restarted, and moved between
processors with no penalty.

Processor Scheduling

Processor Scheduling: Example

program start end req time

1 1 5 3

2 3 5 2

3 3 7 4

4 5 9 4

Find	a	schedule	using	3	processors.

Processor Scheduling: Example

program start end req time

1 1 5 3

2 3 5 2

3 3 7 4

4 5 9 4

1 2 3 4 5 6 7 8 9

1

2

3

1

2

3

4

> Note that programs can be stopped, restarted, and moved
between processors with no penalty.

> If the program can be started at time s and must finish by time e
and requires total processing time p, we need to find an
assignment of the program to p 1-second intervals in [s, e].
– i.e, this is essentially a matching problem
– units of processing for programs need to be matched to

intervals of available time on the processors
– in this case, p units of time matched to intervals in [s, e]

Processor Scheduling

> Can make this more efficient...
– as described, we have np nodes on the left and mT nodes on the right,

where T = last finish time – earliest start time

> Can have only one node for each program and 1-second interval
– allow a program requiring p units of time to be assigned to p intervals
– allow each interval to be assigned m different programs (for m processors)

Processor Scheduling

Processor Scheduling: Example

program start end req time

1 1 5 3

2 3 5 2

3 3 7 4

4 5 9 4s

programs

1

intervals

t

1

3

1

2

3

4

2

3

4

5

6

7

8

1
1

1

1
1

2

4

4

3

3

processing	time

number	of	processors

> Max flow of value equal to sum of processing times gives an
assignment of each program to a set of distinct times such that
the total assigned to each time is at most m
– can choose program ~> processor assignment

arbitrarily since we can move programs
around with no penalty

Processor Scheduling

s

1

t

1

3
1

2

3

4

2
3
4
5
6
7
8
9

1
1
1

1
1
1

2
4
4

3

3

> Can make this more efficient...

> Can have only one node for each program and 1-second interval
– allow a program requiring p units of time to be assigned to p intervals
– allow each interval to be assigned m different programs (for m processors)

> Still pseudo-polynomial due to use of 1-second intervals
– need T (= last finish time – earliest start time) intervals
– instead, break into intervals containing no program start or end
– time is completely fungible within each of these intervals

Processor Scheduling

> Escape Problem
> Covering with Dominos
> Token Placing
> Processor Scheduling
> Airline Scheduling

Outline for Today

> Problem: Given a collection of n flights with departure times (sj)
and arrival times (ej), determine whether there it is possible to
schedule all of the flights using only m crews (pilots, etc.)

> Can easily generalize this to require a certain amount of
preparation time (ti,j) between particular pairs of flights
– pilots and attendants might need breaks
– they might also need to transit from one city to another

Airline Scheduling

> Suppose we have these three flights and two crews:

Airline Scheduling: Example

flight start end

1 0 2

2 3 4

3 3 4

delay 1 2 3

1 2 1

2 2 3

3 1 3

> Flights 2 & 3 cannot be serviced by 1 crew
– they are flying at the same time

> Flights 1 & 2 cannot be serviced by 1 crew :
– 2 needs to start 1 hour after 1 but takes 2 hours to prepare

> Flights 1 & 3 can be serviced by 1 crew

Airline Scheduling: Example

flight start end

1 0 2

2 3 4

3 3 4

delay 1 2 3

1 2 1

2 2 3

3 1 3

> Optimal schedule:
– crew 1 runs 1 and then 3
– crew 2 runs 2

Airline Scheduling: Example

flight start end

1 0 2

2 3 4

3 3 4

delay 1 2 3

1 2 1

2 2 3

3 1 3

> Model single crew as a network flow where flow of 1 unit
describes a schedule for one crew:

Airline Scheduling

s

1

t

1

1 2

3

1

1

1

1

Arrow from i to j if j can be servied after i
(i.e., if sj ≥ ei + ti,j)

Paths from s to t are in 1-to-1 correspondence
with valid schedules for one crew. (I.e., really a
path problem so far.)

> Identify each flow with an individual crew....

Airline Scheduling: False Start

s

1

t

1

2

3

1

1

1

1

Flow of value of m schedules all crews

Q: What is wrong with this?1

2

crew flights

A: Doesn’t tell us whether all flights
are actually scheduled!

> Identify each flow with an individual crew....

Airline Scheduling: False Start

s

1

t

1

2

3

1

1

1

1

Need to ensure that some crew’s path
goes through every node

1

2

crew flights

Saw how to set upper bounds on flow
through a node, but what we really want
here are lower bounds (of 1) on the flow

We will see how to
support lower bounds
next lecture...

> Problem: Given a collection of n flights with departure times (sj)
and arrival times (ej), determine the minimum number of crews
needed to service all of the flights.

> Q: How do we solve this?
> A: Binary search

– answer is between 0 and n (inclusive)
– previous algorithm says if we need more or fewer crews

Airline Scheduling v2

