CSE 417 Network Flows (pt2) Modeling with Max Flow

Reminders

> HW6 is due on Friday

- start early
- may take time to figure out the sub-structure

Review of last lecture

> Defined the maximum flow problem

- find the feasible flow of maximum value
- flow is feasible if it satisfies edge capacity and node balance constraints
> Described the Ford-Fulkerson algorithm
- starts with a feasible flow (all zeros) and improves it (by augmentations)
- non-greedy: augmentations can undo flow added by previous augmentations
- essentially optimal if max capacity on edges into t is $\mathrm{O}(1)$
- have not yet proven it correct...
> Many, many other algorithms...

Outline for Today

> Escape Problem
> Covering with Dominos
> Token Placing
> Processor Scheduling
> Airline Scheduling

Escape Problem

> Problem: Given a set of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{m}\right)$ on an $n \times n$ grid, determine whether there exists a set of paths along grid lines from each of the points to the boundary that do not intersect

Escape Problem Example

This example has a solution:

from "Introduction to Algorithms"
W

Escape Problem Example 2

This example does not:

from "Introduction to Algorithms"
W

Escape Problem Example 3

Another with a solution:

from http://jeffe.cs.illinois.edu/teaching/algorithms/notes/24-maxflowapps.pdf

Robber Problem

> Problem: Bank robbers are planning to rob a number of banks around the city at exactly the same time. They will be pursued by the police as they flee. Find escape routes for the robbers that do not use any of the same roads or intersections.

- (one robber doesn't want to run into the police chasing another robber)
> Other assumptions:
- city map is given as a graph with intersections as nodes and roads as edges
- can assume all the banks are at the corners of intersections

Robber Problem

> Generalization of the previous problem...
> Here's what it might like look like if the streets are a grid:

> (from an ACM programming contest ~1997)

Robber Problem

> Solve by modeling with max flow:

- roads become edges (in both direction) with capacity 1

Robber Problem

> Solve by modeling with max flow:

- roads become edges (in both direction) with capacity 1
- source node has edges to each bank with capacity 1

Robber Problem

> Solve by modeling with max flow:

- roads become edges (in both direction) with capacity 1
- source node has edges to each bank with capacity 1
- edges from boundary nodes to the sink with capacity 1

Robber Problem

> Solve by modeling with max flow
> Has a solution iff the max flow equals the number of robbers

w

Robber Problem

> Solve by modeling with max flow

> Has a solution iff the max flow equals the number of robbers:

- can assume flow is \{0, 1\} on each edge - (by F-F)
- flow on each edge (s, u) gives a path from u to the boundary...
$>$ flow into u on (s, u) leaves on some edge (u, v)
$>$ flow into v on (u, v) leaves on some edge (v, w)
> can only stop with an edge (z, t), and z is a boundary node by construction
- two paths using the same edge would violate edge capacity

Robber Problem

> Solve by modeling with max flow

> Has a solution iff the max flow equals the number of robbers
> Q: What's missing?
> A: Two paths could use the same intersection!

- as long as the paths enter and leave via different edges, it would be allowed
- somehow need to put a capacity on nodes also

Node Capacity Constraints

> These are easy to add to any max flow problem
> Consider any node...

- it has some number of incoming edges and outgoing edges

w

Node Capacity Constraints

> These are easy to add to any max flow problem
> Consider any node...

- split it into two parts
- one part for incoming edges and one for outgoing edges

Node Capacity Constraints

> These are easy to add to any max flow problem
> Consider any node...

- split it into two parts
- one part for incoming edges and one for outgoing edges
- add edge between them with capacity for the node

Node Capacity Constraints

> These are easy to add to any max flow problem
> Consider any node...

- split it into two parts
- one part for incoming edges and one for outgoing edges
- add edge between them with capacity for the node
> All flow through the node now goes through this internal edge
> That allows us to limit the total flow using the node
- node balance constraint is preserved...
- flow balance constraint on the two nodes tell us:
flow into the first node = flow along internal edge = flow out of the second node

Robber Problem

> Solve by modeling with max flow

- previous construction

- plus node capacities of 1
> Has a solution iff the max flow equals the number of robbers
- already proved that paths must be edge-disjoint
- node capacity means paths must be node-disjoint as well

Robber Problem

> Solve by modeling with max flow

- previous construction

- plus node capacities of 1
> Has a solution iff the max flow equals the number of robbers
- we have shown that this properly models the robber problem:
> every solution to the robber problem corresponds to a flow of value \#robbers
> every 0/1 flow of value \#robbers encodes escape paths for all robbers
> Ford-Fulkerson runs in $\mathrm{O}(\mathrm{nm})$ time since $\mathrm{U}=1$

Outline for Today

> Escape Problem
> Covering with Dominos

> Token Placing
> Processor Scheduling
> Airline Scheduling

Covering with Dominos

> Problem: Given a checker board with some squares deleted, find a way to cover the board with dominos.

- each domino covers two adjacent squares (vertical or horizontal)

Covering with Dominos Example

> Problem: Given a checker board with some squares deleted, find a way to cover the board with dominos.

from http://jeffe.cs.illinois.edu/teaching/algorithms/notes/24-maxflowapps.pdf

Covering with Dominos

> Observation: This looks like a matching problem

- each domino connects a pair of adjacent squares
> Unfortunately, it looks like a general matching problem
- graph has a node for each square and edges between (≤ 4) adjacent ones
- as noted before, the problem is harder than max flow on a general graph

Covering with Dominos: False Start

> Observation: This looks like a general matching problem
> Could try putting every square on both the left \& right side

- allow matching squares on left and right only to adjacent ones (not selves)

> BUT the matchings would not always be solutions...
- e.g., square 1 on the left might be matched with square i, but square 1 on the right might be matched with square $\mathrm{j} \neq \mathrm{i}$

Covering with Dominos

> Observation: This looks like a general matching problem
> In fact, this is a bipartite matching problem!
> Q: What are the two parts?
> A: The dark squares and the light squares

- each domino touches exactly one of each

Outline for Today

> Escape Problem
> Covering with Dominos
> Token Placing
> Processor Scheduling
> Airline Scheduling

Token Placing

> Problem: Given a checker board with some squares deleted, find a set of locations to place tokens such that there is exactly one token in every row and one in every column.

from http://jeffe.cs.illinois.edu/teaching/algorithms/notes/24-maxflowapps.pdf

Token Placing: False Start

> First thought: what the heck even is this?
> Second thought: turn row / col restrictions into flow constraints?

W

Token Placing: False Start

> First thought: what the heck even is this?
> Second thought: turn row / col restrictions into flow constraints?

- can use that to ensure only one in each row OR in each column
> (a useful idea we can use elsewhere)
- BUT how can we do both at once?
$>$ lose track of what column it came from when we flow into the row nodes
$>$ could put 2 units of flow into a square, one for row \& one for col, but there is no guarantee that the solution uses 2 units
- doesn't seem to work...

Token Placing

> Hint: this is a bipartite matching problem
> Q: Matching what and what?
> A: Between rows and columns

- (row, col) pair = square on the board
- white squares show which (row, col) pairs are allowed
- matching because each row \& col can only be used once
- has a solution if there is a matching that uses all n rows \& cols
> the matching says on what squares you place tokens

Outline for Today

> Escape Problem
$>$ Covering with Dominos
> Token Placing
> Processor Scheduling
> Airline Scheduling

Processor Scheduling

> Problem: Given n programs \& m (single-core) processors along with:

- times after which the programs can be started
- times by which the programs must be completed
- total processing time to complete the program

Find a schedule for running the programs on processors that meets the deadlines.
> Note that programs can be stopped, restarted, and moved between processors with no penalty.

Processor Scheduling: Example

program	start	end	req time
1	1	5	3
2	3	5	2
3	3	7	4
4	5	9	4

Find a schedule using 3 processors.

Processor Scheduling: Example

program	start	end	req time
1	1	5	3
2	3	5	2
3	3	7	4
4	5	9	4

Processor Scheduling

> Note that programs can be stopped, restarted, and moved between processors with no penalty.
> If the program can be started at time s and must finish by time e and requires total processing time p, we need to find an assignment of the program to p 1 -second intervals in [s, e].

- i.e, this is essentially a matching problem
- units of processing for programs need to be matched to intervals of available time on the processors
- in this case, p units of time matched to intervals in [s,e]

Processor Scheduling

> Can make this more efficient...

- as described, we have np nodes on the left and mT nodes on the right, where $\mathrm{T}=$ last finish time - earliest start time
> Can have only one node for each program and 1-second interval
- allow a program requiring p units of time to be assigned to p intervals
- allow each interval to be assigned m different programs (for m processors)

Processor Scheduling: Example

Processor Scheduling

> Max flow of value equal to sum of processing times gives an assignment of each program to a set of distinct times such that the total assigned to each time is at most m

- can choose program ~> processor assignment arbitrarily since we can move programs around with no penalty

Processor Scheduling

> Can make this more efficient...
> Can have only one node for each program and 1-second interval

- allow a program requiring p units of time to be assigned to p intervals
- allow each interval to be assigned m different programs (for m processors)
> Still pseudo-polynomial due to use of 1-second intervals
- need T (= last finish time - earliest start time) intervals
- instead, break into intervals containing no program start or end
- time is completely fungible within each of these intervals

Outline for Today

> Escape Problem
$>$ Covering with Dominos
> Token Placing
> Processor Scheduling
> Airline Scheduling

Airline Scheduling

> Problem: Given a collection of n flights with departure times $\left(\mathrm{s}_{\mathrm{j}}\right)$ and arrival times (e_{j}), determine whether there it is possible to schedule all of the flights using only m crews (pilots, etc.)
> Can easily generalize this to require a certain amount of preparation time ($\mathrm{t}_{\mathrm{i}, \mathrm{j}}$) between particular pairs of flights

- pilots and attendants might need breaks
- they might also need to transit from one city to another

Airline Scheduling: Example

> Suppose we have these three flights and two crews:

flight	start	end
1	0	2
2	3	4
3	3	4

delay	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
1		2	1
2	2		3
3	1	3	

Airline Scheduling: Example

flight	start	end	delay $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ 1 0 2 1 2 1 2 3 4 2 2 3 3 3 4 3	1	3	

> Flights 2 \& 3 cannot be serviced by 1 crew

- they are flying at the same time
$>$ Flights 1 \& 2 cannot be serviced by 1 crew :
- 2 needs to start 1 hour after 1 but takes 2 hours to prepare
$>$ Flights $1 \& 3$ can be serviced by 1 crew

Airline Scheduling: Example

flight	start	end
1	0	2
2	3	4
3	3	4

delay	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
1		2	1
2	2		3
3	1	3	

> Optimal schedule:

- crew 1 runs 1 and then 3
- crew 2 runs 2

Airline Scheduling

> Model single crew as a network flow where flow of 1 unit describes a schedule for one crew:

Arrow from ito jif j can be servied after i
(i.e., if $s_{j} \geq e_{i}+t_{i, j}$)

Paths from s to t are in 1-to-1 correspondence with valid schedules for one crew. (l.e., really a path problem so far.)

Airline Scheduling: False Start

> Identify each flow with an individual crew....
crew flights

Flow of value of m schedules all crews
Q: What is wrong with this?
A: Doesn't tell us whether all flights are actually scheduled!

Airline Scheduling: False Start

> Identify each flow with an individual crew....

crew

Need to ensure that some crew's path goes through every node

Saw how to set upper bounds on flow through a node, but what we really want here are lower bounds (of 1) on the flow

We will see how to support lower bounds next lecture...

Airline Scheduling v2

> Problem: Given a collection of n flights with departure times $\left(\mathrm{s}_{\mathrm{j}}\right)$ and arrival times (e_{j}), determine the minimum number of crews needed to service all of the flights.
> Q: How do we solve this?
> A: Binary search

- answer is between 0 and n (inclusive)
- previous algorithm says if we need more or fewer crews

