CSE 417 Network Flows (pt 2) Modeling with Max Flow

UNIVERSITY of WASHINGTON

Reminders

> HW6 is due on Friday

- start early
- may take time to figure out the sub-structure

Review of last lecture

- > Defined the maximum flow problem
 - find the feasible flow of maximum value
 - flow is feasible if it satisfies edge capacity and node balance constraints
- > Described the Ford-Fulkerson algorithm
 - starts with a feasible flow (all zeros) and improves it (by augmentations)
 - non-greedy: augmentations can undo flow added by previous augmentations
 - essentially optimal if max capacity on edges into t is O(1)
 - have not yet proven it correct...
- > Many, many other algorithms...

Outline for Today

- > Escape Problem
- > Covering with Dominos
- > Token Placing
- > Processor Scheduling
- > Airline Scheduling

Escape Problem

> Problem: Given a set of points (x₁, y₁), ..., (x_n, y_m) on an n x n grid, determine whether there exists a set of paths along grid lines from each of the points to the boundary that *do not intersect*

Escape Problem Example

This example has a solution:

from "Introduction to Algorithms"

Escape Problem Example 2

This example does not:

from "Introduction to Algorithms"

Escape Problem Example 3

Another with a solution:

from http://jeffe.cs.illinois.edu/teaching/algorithms/notes/24-maxflowapps.pdf

- > Problem: Bank robbers are planning to rob a number of banks around the city at exactly the same time. They will be pursued by the police as they flee. Find *escape routes* for the robbers that do not use any of the same roads or intersections.
 - (one robber doesn't want to run into the police chasing another robber)
- > Other assumptions:
 - city map is given as a graph with intersections as nodes and roads as edges
 - can assume all the banks are at the corners of intersections

- > Generalization of the previous problem...
- > Here's what it might like look like if the streets are a grid:

> (from an ACM programming contest ~1997)

> Solve by modeling with max flow:

roads become edges (in both direction) with capacity 1

> Solve by modeling with max flow:

- roads become edges (in both direction) with capacity 1
- source node has edges to each bank with capacity 1

> Solve by modeling with max flow:

- roads become edges (in both direction) with capacity 1
- source node has edges to each bank with capacity 1
- edges from boundary nodes to the sink with capacity 1

> Solve by modeling with max flow

> Has a solution iff the max flow equals the number of robbers

> Solve by modeling with max flow

- > Has a solution iff the max flow equals the number of robbers:
 - can assume flow is {0, 1} on each edge (by F-F)
 - flow on each edge (s,u) gives a path from u to the boundary...
 - > flow into u on (s,u) leaves on some edge (u,v)
 - > flow into v on (u,v) leaves on some edge (v,w)
 - > can only stop with an edge (z,t), and z is a boundary node by construction
 - two paths using the same edge would violate edge capacity

(not as obvious as it sounds...)

> Solve by modeling with max flow

- > Has a solution iff the max flow equals the number of robbers
- > **Q**: What's missing?
- > **A**: Two paths could use the same intersection!
 - as long as the paths enter and leave via different <u>edges</u>, it would be allowed
 - somehow need to put a capacity on <u>nodes</u> also

> These are easy to add to any max flow problem

> Consider any node...

- it has some number of incoming edges and outgoing edges

> These are easy to add to any max flow problem

> Consider any node...

- split it into two parts
- one part for incoming edges and one for outgoing edges

> These are easy to add to any max flow problem

> Consider any node...

- split it into two parts
- one part for incoming edges and one for outgoing edges
- add edge between them with capacity for the node

> These are easy to add to any max flow problem

> Consider any node...

- split it into two parts
- one part for incoming edges and one for outgoing edges
- add edge between them with capacity for the node
- > All flow through the node now goes through this internal edge
- > That allows us to limit the total flow using the node
 - node balance constraint is preserved...
 - flow balance constraint on the two nodes tell us:
 flow into the first node = flow along internal edge = flow out of the second node

> Solve by modeling with max flow

- previous construction
- plus node capacities of 1

- > Has a solution iff the max flow equals the number of robbers
 - already proved that paths must be edge-disjoint
 - node capacity means paths must be node-disjoint as well

> Solve by modeling with max flow

- previous construction
- plus node capacities of 1

- > Has a solution iff the max flow equals the number of robbers
 - we have shown that this properly models the robber problem:
 - > every solution to the robber problem corresponds to a flow of value #robbers
 - > every 0/1 flow of value #robbers encodes escape paths for all robbers
- > Ford-Fulkerson runs in O(nm) time since U = 1

Outline for Today

- > Escape Problem
- > Covering with Dominos 🤇 💳

- > Token Placing
- > **Processor Scheduling**
- > Airline Scheduling

Covering with Dominos

- > **Problem**: Given a checker board with some squares *deleted*, find a way to cover the board with dominos.
 - each domino covers two adjacent squares (vertical or horizontal)

Covering with Dominos Example

> **Problem**: Given a checker board with some squares *deleted*, find a way to cover the board with dominos.

W

from http://jeffe.cs.illinois.edu/teaching/algorithms/notes/24-maxflowapps.pdf

Covering with Dominos

- > **Observation**: This looks like a matching problem
 - each domino connects a *pair* of adjacent squares
- > Unfortunately, it looks like a <u>general</u> matching problem
 - graph has a node for each square and edges between (\leq 4) adjacent ones
 - as noted before, the problem is harder than max flow on a general graph

Covering with Dominos: False Start

- > **Observation**: This looks like a general matching problem
- > Could try putting every square on both the left & right side
 - allow matching squares on left and right only to adjacent ones (not selves)

- > BUT the matchings would not always be solutions...
 - e.g., square 1 on the left might be matched with square i, but square 1 on the right might be matched with square j ≠ i

Covering with Dominos

- > **Observation**: This looks like a general matching problem
- > In fact, this is a *bipartite* matching problem!
- > **Q**: What are the two parts?
- > **A**: The dark squares and the light squares
 - each domino touches *exactly one of each*

Outline for Today

- > Escape Problem
- > Covering with Dominos
- > Token Placing
- > Processor Scheduling
- > Airline Scheduling

Token Placing

> **Problem**: Given a checker board with some squares deleted, find a set of locations to place tokens such that there is *exactly* one token in every row and one in every column.

from http://jeffe.cs.illinois.edu/teaching/algorithms/notes/24-maxflowapps.pdf

Token Placing: False Start

> First thought: what the heck even is this?

> Second thought: turn row / col restrictions into flow constraints?

Token Placing: False Start

> First thought: what the heck even is this?

> Second thought: turn row / col restrictions into flow constraints?

- can use that to ensure only one in each row OR in each column
 - > (a useful idea we can use elsewhere)
- BUT how can we do both at once?
 - > lose track of what column it came from when we flow into the row nodes
 - > could put 2 units of flow into a square, one for row & one for col, but there is no guarantee that the solution uses 2 units
- doesn't seem to work...

Token Placing

> **Hint**: this is a bipartite matching problem

- > **Q**: Matching what and what?
- > A: Between rows and columns
 - (row, col) pair = square on the board
 - white squares show which (row, col) pairs are allowed
 - matching because each row & col can only be used once
 - has a solution if there is a matching that uses all n rows & cols
 > the matching says on what squares you place tokens

Outline for Today

- > Escape Problem
- > Covering with Dominos
- > Token Placing
- > Processor Scheduling

> Airline Scheduling

Processor Scheduling

> **Problem**: Given n programs & m (single-core) processors along with:

- times *after which* the programs can be started
- times *by which* the programs must be completed
- total processing time to complete the program

Find a schedule for running the programs on processors that meets the deadlines.

> Note that programs can be stopped, restarted, and moved between processors with no penalty.

W

Processor Scheduling: Example

program	start	end	req time
1	1	5	3
2	3	5	2
3	3	7	4
4	5	9	4

Find a schedule using 3 processors.

Processor Scheduling: Example

program	start	end	req time
1	1	5	3
2	3	5	2
3	3	7	4
4	5	9	4

- > Note that programs can be stopped, restarted, and moved between processors with no penalty.
- > If the program can be started at time s and must finish by time e and requires total processing time p, we need to find an assignment of the program to p 1-second intervals in [s, e].
 - i.e, this is essentially a matching problem
 - units of processing for programs need to be matched to intervals of available time on the processors
 - in this case, p units of time matched to intervals in [s, e]

> Can make this more efficient...

as described, we have np nodes on the left and mT nodes on the right,
 where T = last finish time – earliest start time

> Can have only one node for each program and 1-second interval

- allow a program requiring p units of time to be assigned to p intervals
- allow each interval to be assigned m different programs (for m processors)

Processor Scheduling: Example

programs

intervals

number of processors

program	start	end	req time	
1	1	5	3	
2	3	5	2	
3	3	7	4	
4	5	9	4	

> Max flow of value equal to sum of processing times gives an assignment of each program to a set of *distinct* times such that the total assigned to each time is at most m

3

1

 can choose program ~> processor assignment arbitrarily since we can move programs around with no penalty

> Can make this more efficient...

> Can have only one node for each program and 1-second interval

- allow a program requiring p units of time to be assigned to p intervals
- allow each interval to be assigned m different programs (for m processors)
- > Still pseudo-polynomial due to use of 1-second intervals
 - need T (= last finish time earliest start time) intervals
 - instead, break into intervals containing no program start or end
 - time is completely fungible within each of these intervals

Outline for Today

- > Escape Problem
- > Covering with Dominos
- > Token Placing
- > Processor Scheduling
- > Airline Scheduling

Airline Scheduling

- > Problem: Given a collection of n flights with departure times (s_j) and arrival times (e_j), determine whether there it is possible to schedule all of the flights using only m crews (pilots, etc.)
- > Can easily generalize this to require a certain amount of preparation time (t_{i,i}) between particular pairs of flights
 - pilots and attendants might need breaks
 - they might also need to transit from one city to another

Airline Scheduling: Example

> Suppose we have these **three** flights and **two** crews:

flight	start	end
1	0	2
2	3	4
3	3	4

delay	1	2	3
1		2	1
2	2		3
3	1	3	

Airline Scheduling: Example

flight	start	end	delay	1	2	3
1	0	2	1		2	1
2	3	4	2	2		3
3	3	4	3	1	3	

- > Flights 2 & 3 cannot be serviced by 1 crew
 - they are flying at the same time
- > Flights 1 & 2 cannot be serviced by 1 crew :
 - 2 needs to start 1 hour after 1 but takes 2 hours to prepare
- > Flights 1 & 3 can be serviced by 1 crew

Airline Scheduling: Example

flight	start	end	delay	1	2	3
1	0	2	1		2	1
2	3	4	2	2		3
3	3	4	3	1	3	

> Optimal schedule:

- crew 1 runs 1 and then 3
- crew 2 runs 2

Airline Scheduling

> Model single crew as a network flow where flow of 1 unit describes a schedule for one crew:

Arrow from i to j if j can be servied after i (i.e., if $s_j \ge e_i + t_{i,j}$)

Paths from s to t are in 1-to-1 correspondence with valid schedules for one crew. (I.e., really a path problem so far.)

Airline Scheduling: False Start

> Identify each flow with an individual crew....

crew flights

Flow of value of m schedules all crews

- **Q**: What is wrong with this?
- A: Doesn't tell us whether all flights are actually scheduled!

Airline Scheduling: False Start

> Identify each flow with an individual crew....

Need to ensure that some crew's path goes through every node

Saw how to set upper bounds on flow through a node, but what we really want here are *lower bounds* (of 1) on the flow

We will see how to support lower bounds **next lecture**...

Airline Scheduling v2

- > Problem: Given a collection of n flights with departure times (s_j) and arrival times (e_j), determine the <u>minimum</u> number of crews needed to service all of the flights.
- > **Q**: How do we solve this?
- > A: Binary search
 - answer is between 0 and n (inclusive)
 - previous algorithm says if we need more or fewer crews