CSE 417
Network Flows (pt 1)

Max Flow

Review of last lecture

> Optimal substructure: (small) set of solutions, constructed from opt
solutions to sub-problems, that always contains the optimal one

> Can construct the optimal solution for each sub-problem
— we usually just recorded the value of the solution to save time & space
— with careful data structures, you can sometimes record solutions just as quickly
> BUT that does not allow you to save space by only keeping last col / row

— we used the same trick for midpoints as for values
> compute value of the solutions from values on sub-problems
> compute midpoint of the solutions from midpoints on sub-problems

Foreword

> Back to modeling...
— shortest path
— binary / ternary search
— network flows

> Algorithms for network flows are unlike D&C and DP
— both of those relied on solutions to sub-problems
— none of the algorithms we will discuss work that way

— they are more like coordinate descent than D&C or DP
> maintain a possible solution and improve it to optimality

Flows

> Let s andt be two nodes of a graph G.
— sis called the “source” and t the “sink”

> A flow assigns a non-negative number, f_, to each edge e
— represents the amount of water / cars / etc. moving along the edge per unit time

Flows

> A flow is balanced if, at every node other than s or t, the amount of
incoming flow equals the amount of outgoing flow
— incoming flow at n = sum of flows on edges into n
— these are called “flow balance constraints”

3+1=4

5 - @ 4

O, 2 1 ®

Flows

> Call incoming flow - outgoing flow at node n the excess flow
— flow balance constraint says excess flow = 0 everywhere but s & t

> Fact: if f is balanced, then excess flow at t = -excess flow at s
— intuition: -excess flow leaving s cannot pool at any other node, so it ends up at t

O, 2 1 ®

Flows

> Call incoming flow - outgoing flow at node n the excess flow
— flow balance constraint says excess flow = 0 everywhere but s & t

> Fact: if f is balanced, then excess flow at t = -excess flow at s
— intuition: -excess flow leaving s cannot pool at any other node, so it ends up at't

— proof

> sum of excess flows of all nodes is 0
— every edge flow appears twice — once incoming (+) and once outgoing (-) — so sum is 0

> values are zero everywhere but s and t, so excess(s) + excess(t) =0

> The excess flow at tis called the value of the flow

Maximum Flow

> Problem: Given a graph G, two nodes s and t, and edge capacities,
C. for each edge e, find the maximum value of any balanced flow
where the flow on each edge e no more than c..

problem is to find
> Call a flow feasible if it satisfies both feasible flow of

— flow balance constraint: excess(n) =0 for eachn #s, t maximum value
— capacity constraint: f, < ¢, for each edge e

> Given flow, easy to check that constraints are satisfied
— not easy to see if value is optimal... more on that later

Maximum Flow Example

Will see next time
how to check that

9

@) 9 ®) this is optimal...
10 1 ;
10 40 15 15 0 10
8 9

©
@
@

©®

4 10
) 4 0O 6 15 0
capacity — 15 10
flow — 14 ”

Value = 28

Applications

Project selection
Airline scheduling
Baseball elimination
Image segmentation
Network connectivity
Network reliability
Intrusion detection

VvV V V V V VYV

V V. V V V V

Distributed computing

Egalitarian stable matching
Security of statistical data

Data mining

Multi-camera scene reconstruction

Bipartite Matching

> Problem: Given two lists of objects, A and B, and a set of allowed
matches {(a, b)}, find the largest possible subset of the matches
with the property that elementin A or B is not matched 2+ times.

> Q: What does this have to do with graphs?

W

Bipartite Matching

> Problem: Given two lists of objects, A and B, and a set of allowed
matches {(a, b)}, find the largest possible subset of the matches
with the property that elementin A or B is not matched 2+ times.

O O find a subset of edges

(a,b) with no two edges
O O sharing the same aorb
O O

As B's

Bipartite Matching

> Problem: Given two lists of objects, A and B, and a set of allowed
matches {(a, b)}, find the largest possible subset of the matches
with the property that elementin A or B is not matched 2+ times.

Q O | |
optimal matching
< has 3 matched pairs
O ~ O
O O

As B's

Bipartite Matching

> Solve bipartite matching by modeling as maximum flow

— flow along an edge indicates a match: 1 for matched, 0 for not
> also flow along each edge must be 0 or 1 (more on that later...)

O O
O O
O O

As B's

Bipartite Matching

> Solve bipartite matching by modeling as maximum flow

— flow along an edge indicates a match
— capacity constraints ensure each object is chosen at most once

one unit of flow into a O O can only have one unit of flow into b
cangotoonlyoneb since only outgoing edge has capacity 1

® 1+ O O 1+ ©®
O O

As B's

Bipartite Matching

> Maximum bipartite matching is no harder than maximum flow
— (assuming we can require a 0/1 flow)

> Moral: information about “allowed pairs” is a (bipartite) graph
— any such information in a problem is a hint to model with network flows

— in fact, network flow problems on bipartite graphs are not actually easier than
general graphs for this problem
> (may show the reduction later if we have time...)

More on Matching

> Maximum matching be solved on non-bipartite (general) graphs,
BUT that problem is harder
— separate theory of matchings and associated algorithms
— one exception: easy to find “stable marriage” matchings

> Foreword: can also consider weighted graphs...
— find the matching that maximizes the total weight of the matching
— also called the “assignment problem”

— this is a harder problem than the basic version
> related: min cost flow is harder than maximum flow

Ford-Fulkerson

> ldea: maintain a feasible flow and continue to improve it

— once we cannot find a way to improve the flow,
then we can (hopefully) prove it is actually optimal

> Can start with flow f, = 0 for each edge e
— satisfies capacity constraints since ¢, >0
— satisfies balance constraints since incoming flow = outgoing flow =0

Ford-Fulkerson

> To improve it, find an s ~> t path along which we can send more flow

> |n more detail:

— create a graph, G(f), with only edges along which we can send more flow
> e.g., edge e with f, < ¢, can get c, - f. more flow and still satisfy capacity constraints

— apath from s to tin G(f) gives us a way increase the flow
> increase every edge on path by the minimum allowed increase of all the edges
> intermediate nodes get more in but also more out flow, so balance is preserved

> |If there is no such path, then we cannot improve it
— we will prove this formally later...

Residual Gl‘aph G(f) is called the “residual graph”

> Given flow f, define G(f) to have the same nodes as G

> If e =(u,v)is an edge of G with f, <,
then G(f) has edge e with capacity c, - f,
— represents the ability to push more flow along e

> If e =(u,v)is an edge of Gwith 0 <f,,
then G(f) has an edge e’ = (v,u) with capacity f,
— represents the ability to push /ess flow along e

Residual Graph

> Given flow f, define G(f) to have the same nodes as G

> If e =(u,v)is an edge of G with f, <,
then G(f) has edge e with capacity c, - f,

> If e =(u,v)is an edge of Gwith 0 <f,,
then G(f) has an edge e’ = (v,u) with capacity f,

capacity residual capacity

' '
T T ==

G N flow G(f) residual capacity

Residual Graph

>

>

Given flow f, define G(f) to have the same nodes as G

If e =(u,v) is an edge of G with f_ <c,,
then G(f) has edge e with capacity c, - f,

If e = (u,v) is an edge of G with 0 <f,,
then G(f) has an edge e’ = (v,u) with capacity f,

Can get capacity both from (u,v) and also from (v,u)
— if so, add their capacities in the same direction together
— (only want one edge from u to v)

W

Ford-Fulkerson

let flow f = 0 for every edge start with a feasible flow
repeat
find an s ~> t path in G(f) e.g. use DFS or BFS
if none exists: still satisfies both balance and capacity
break constraints by previous argument

else:
let 5 = min capacity of any edge on the path
increase flow f by & along each edge

actually may mean decreasing flow if from a reverse edge

Ford-Fulkerson

network G flow capacity
N\
e @
Q 17)
\\ 0/2 0/‘9 0/6 -,
N 9 value of flow

/
@ 0/10 Q 0/9 O 0/10 @ 0
O ‘ O
residual capacity

residual graph Gt

Ford-Fulkerson

network G flow capacity
N
e—’—@
Q 17)
\\ 0/2 0/& 0/6 -,
N 9 value of flow

/
@ 0/10 Q 0/9 O 0/10 @ 0
residual graph Gs

‘ Q
S/ ~

6 ‘o

e N

Q 9 ()_ 10»@

Ford-Fulkerson

network G
:: Ui Q
Q o
Q@
% \\ 0/2 2 0/6 //

@ 0/10 O 0/9 Q ©/10 @ 0+8=8
residual graph Gs

J Q
S/ ~

6 ‘o

e N

O 20— r—®

Ford-Fulkerson

network G

N\ 0/2 *a/& 0/6 —

@ 0/10 O 0/9 Q /10 @ 0+8=8

Ford-Fulkerson

network G

Q0@

SR 2-6/2 e 0/6 -

@ 0/10 Q ©/9 Q §/10 @ 8 +2=10

Ford-Fulkerson

network G

Q0@

SR 2-6/2 e 0/6 -

@ 0/10 Q ©/9 O §/10 @ 8 +2=10

residual graph Gs

Ford-Fulkerson

network G

Q 0/4 O

residual graph Gs
o S— O\

Ford-Fulkerson

network G

residual graph Gs
6

0/4 O

Ford-Fulkerson

network G

@ 6/10 Q 8/9 O 10/10 @ 16+2=18

residual graph Gs

Ford-Fulkerson

network G

OO

o
N 0-2/2 e/& 6/6

@ 6/10 Q 8/9 O 10/10 @ 16+2=18
_)K

(S —>O— —>O 10

residual graph Gs

Ford-Fulkerson

network G

S > &9
N
\0\ / /& / /0

residual graph Gs

\° \ \

(S —>O— —>O 10

Ford-Fulkerson

network G

Q g &g
AN
0/2 ® 6/6
KN \ / “® / "%

@ 8/10 O 8/9 O 10/10 @ 1841=19

residual graph G

nodes reachable from s 2 >

Ford-Fulkerson

> Sometimes called the “augmenting path” algorithm
— paths along which we push more flow are called augmenting paths
— the process of increasing flow along such a path is called an “augmentation”

> Ford-Fulkerson maintains a feasible flow throughout
> Itimproves the flow through a series of augmentations

> When no augmenting path exists, the flow is optimal
— (still just a claim... we haven't proven it)

Ford-Fulkerson Correctness

> Proof of correctness depends on a concept will discuss next time...

> For today, we will assume this,
and consider what consequences that has...

Ford-Fulkerson Application

> Theorem: If all the capacities are integers, then there is a
maximum flow where each edge flow is integral.

> Proof: Ford-Fulkerson will return an integral flow.
— Feasible flow starts out integral (all zeros).

— Each augmentation increases integral flows by an integer amount
> adjustment is min (capacity - flow) over edges

> if capacities are integers and flows are integers,
then capacity - flow is an integer

> minimum of a set of integers is an integer
— Hence, the flow is always integral, including at the end.

Ford-Fulkerson Running time

> Each augmentation takes O(m) time
— O(1) per edge on the path, and at most m edges on the path

> Each iteration increases the value of the flow by at least 1
— (see previous slide)

> If the maximum capacity on any edge is U, then max value is nU
— value is sum of flow on (< n) edges coming into the sink

> Ford-Fulkerson running time is O(nmU)

Ford-Fulkerson Running time

> Ford-Fulkerson running time is O(nmU)

> Q: s that good?

> A: Yes, if U is small

— in general, ©(nm) is the best we should hope for
> more on this shortly...
> recall that shortest path also takes ©(nm) time if negative weights allowed

— so this is essentially optimal if U = 0O(1)

Ford-Fulkerson Running time

> Ford-Fulkerson running time is O(nmU)

> Q: s that good?
> A:No, if Uis large

— like Knapsack, this is not efficient in the worst case sense
> this is a pseudo-polynomial time algorithm
— even in practice, if U is large, this could be very slow

Ford-Fulkerson Running time

> Not hard to make Ford-Fulkerson truly polynomial...

> Theorem (Edmonds-Karp): If we choose shortest augmenting paths,
then Ford-Fulkerson runs in O(nm2) time

> Note: that algorithm may not actually be faster in practice

— other heuristics may work better
— e.g., choose the path with the largest resulting augmentation

Improvements to Ford-Fulkerson

> Capacity scaling
— round capacity 1,234 down to 1,000, then F-F, then 1,200, F-F, 1,230, F-F, etc.
> flow from last F-F is starting point for next... each has less work to do

— requires only O(m log U) augmentations, so running time is O(m? log U)
> only faster if U >>m/n

> Shortest augmenting path with lazy path construction
— reduce work across multiple shortest path calculations by saving information
— reduces the worst case running time to O(n?m)

> Both together reduce running time to O(nm log U)
— quite good

Other Algorithms

> Generic pre-flow push

> FIFO pre-flow push

— essentially optimal if m = ©(n?)

> Excess scaling pre-flow push
— essentially optimal if m >>n log U

O(n2m)

O(n3)

O(nm + n? log U)

W

Other Algorithms cont.
> Dinic's algorithm O(n?m)

> Dinic’s algorithm + dynamic trees O(nm log n)
— (data structure of Sleator & Tarjan)

> min(Orlin, KRT) O(nm)
— KRT = King, Rao, & Tarjan
— KRT runs in time O(nm log, n), where b =m/(n log n)
> if m>>nlogn, thenlog, n=0(1)
— KRT is O(nm) except for sparse graphs, Orlin is O(nm) on those

Other Algorithms cont.

> Another algorithm is actually fastest in practice...

Algorithms for Special Cases

> Unit capacities O(min(n4/3, m1->))
— breaks the ©(nm) barrier

> Bipartite graphs O(n,2m)
— where node set N = N, union N, (two sides)
— some applications (e.g., network testing) have n, = ©(n,2) = O(n)

Max Flow Algorithms Summary

> Ford-Fulkerson is essentially optimal when U = O(1)

> If a library is available, use it

— may give you either an algorithm that is extremely fast in practice
OR one of the (complex) algorithms with great worst case performance

> If no library is available, start with Ford-Fulkerson
— add capacity scaling and/or lazy shortest paths if necessary
— resultis only a log U factor worse than optimal

