
CSE 417
Network Flows (pt 1)
Max Flow



> HW6 is due in one week
– solve a Knapsack-type problem
– many additional wrinkles
– will need some optimization

Reminders



> Optimal substructure: (small) set of solutions, constructed from opt 
solutions to sub-problems, that always contains the optimal one

> Can construct the optimal solution for each sub-problem
– we usually just recorded the value of the solution to save time & space
– with careful data structures, you can sometimes record solutions just as quickly

> BUT that does not allow you to save space by only keeping last col / row
– we used the same trick for midpoints as for values

> compute value of the solutions from values on sub-problems
> compute midpoint of the solutions from midpoints on sub-problems

Review of last lecture



> Back to modeling...
– shortest path
– binary / ternary search
– network flows

> Algorithms for network flows are unlike D&C and DP
– both of those relied on solutions to sub-problems
– none of the algorithms we will discuss work that way
– they are more like coordinate descent than D&C or DP

> maintain a possible solution and improve it to optimality

Foreword



> Maximum Flow
> Applications
> Ford-Fulkerson
> Other Algorithms

Outline for Today



> Let s and t be two nodes of a graph G.
– s is called the “source” and t the “sink”

> A flow assigns a non-negative number, fe, to each edge e
– represents the amount of water / cars / etc. moving along the edge per unit time

Flows

s t

4

5

2

3

1

5

4



> A flow is balanced if, at every node other than s or t, the amount of 
incoming flow equals the amount of outgoing flow
– incoming flow at n = sum of flows on edges into n
– these are called “flow balance constraints”

Flows

s t

4

5

2

3

1

5

4

3 + 1 = 4



> Call incoming flow – outgoing flow at node n the excess flow
– flow balance constraint says excess flow = 0 everywhere but s & t

> Fact: if f is balanced, then excess flow at t = -excess flow at s
– intuition: -excess flow leaving s cannot pool at any other node, so it ends up at t

Flows

s t

4

5

2

3

1

5

4



> Call incoming flow – outgoing flow at node n the excess flow
– flow balance constraint says excess flow = 0 everywhere but s & t

> Fact: if f is balanced, then excess flow at t = -excess flow at s
– intuition: -excess flow leaving s cannot pool at any other node, so it ends up at t
– proof

> sum of excess flows of all nodes is 0
– every edge flow appears twice — once incoming (+) and once outgoing (-) — so sum is 0

> values are zero everywhere but s and t, so excess(s) + excess(t) = 0

> The excess flow at t is called the value of the flow

Flows



> Problem: Given a graph G, two nodes s and t, and edge capacities, 
ce for each edge e, find the maximum value of any balanced flow 
where the flow on each edge e no more than ce.

> Call a flow feasible if it satisfies both
– flow balance constraint: excess(n) = 0 for each n ≠ s, t
– capacity constraint: fe ≤ ce for each edge e

> Given flow, easy to check that constraints are satisfied
– not easy to see if value is optimal... more on that later

Maximum Flow

problem is to find
feasible flow of
maximum value



Maximum Flow Example
Will see next time
how to check that
this is optimal...



> Maximum Flow
> Applications
> Ford-Fulkerson
> Other Algorithms

Outline for Today



> Project selection
> Airline scheduling
> Baseball elimination
> Image segmentation
> Network connectivity
> Network reliability
> Intrusion detection

Applications

> Distributed computing
> Egalitarian stable matching
> Security of statistical data
> Data mining
> Multi-camera scene reconstruction
> ...



> Problem: Given two lists of objects, A and B, and a set of allowed 
matches {(a, b)}, find the largest possible subset of the matches 
with the property that element in A or B is not matched 2+ times.

> Q: What does this have to do with graphs?

Bipartite Matching



> Problem: Given two lists of objects, A and B, and a set of allowed 
matches {(a, b)}, find the largest possible subset of the matches 
with the property that element in A or B is not matched 2+ times.

Bipartite Matching

A’s B’s

find a subset of edges
(a,b) with no two edges 
sharing the same a or b



> Problem: Given two lists of objects, A and B, and a set of allowed 
matches {(a, b)}, find the largest possible subset of the matches 
with the property that element in A or B is not matched 2+ times.

Bipartite Matching

A’s B’s

optimal matching
has 3 matched pairs



> Solve bipartite matching by modeling as maximum flow
– flow along an edge indicates a match: 1 for matched, 0 for not

> also flow along each edge must be 0 or 1 (more on that later...)

Bipartite Matching

A’s B’s



> Solve bipartite matching by modeling as maximum flow
– flow along an edge indicates a match
– capacity constraints ensure each object is chosen at most once

Bipartite Matching

A’s B’s

s t
1

1

1

1

1

1

one unit of flow into a
can go to only one b

can only have one unit of flow into b
since only outgoing edge has capacity 1



> Maximum bipartite matching is no harder than maximum flow
– (assuming we can require a 0/1 flow)

> Moral: information about “allowed pairs” is a (bipartite) graph
– any such information in a problem is a hint to model with network flows
– in fact, network flow problems on bipartite graphs are not actually easier than 

general graphs for this problem
> (may show the reduction later if we have time...)

Bipartite Matching



> Maximum matching be solved on non-bipartite (general) graphs,
BUT that problem is harder
– separate theory of matchings and associated algorithms
– one exception: easy to find “stable marriage” matchings

> Foreword: can also consider weighted graphs...
– find the matching that maximizes the total weight of the matching
– also called the “assignment problem”
– this is a harder problem than the basic version

> related: min cost flow is harder than maximum flow

More on Matching



> Maximum Flow
> Applications
> Ford-Fulkerson
> Other Algorithms

Outline for Today



> Idea: maintain a feasible flow and continue to improve it
– once we cannot find a way to improve the flow,

then we can (hopefully) prove it is actually optimal

> Can start with flow fe = 0 for each edge e
– satisfies capacity constraints since ce ≥ 0
– satisfies balance constraints since incoming flow = outgoing flow = 0

Ford-Fulkerson



> To improve it, find an s ~> t path along which we can send more flow

> In more detail:
– create a graph, G(f), with only edges along which we can send more flow

> e.g., edge e with fe < ce can get ce – fe more flow and still satisfy capacity constraints
– a path from s to t in G(f) gives us a way increase the flow

> increase every edge on path by the minimum allowed increase of all the edges
> intermediate nodes get more in but also more out flow, so balance is preserved

> If there is no such path, then we cannot improve it
– we will prove this formally later...

Ford-Fulkerson



> Given flow f, define G(f) to have the same nodes as G

> If e = (u,v) is an edge of G with fe < ce,
then G(f) has edge e with capacity ce – fe
– represents the ability to push more flow along e

> If e = (u,v) is an edge of G with 0 < fe,
then G(f) has an edge e’ = (v,u) with capacity fe
– represents the ability to push less flow along e

Residual Graph G(f) is called the “residual graph”



> Given flow f, define G(f) to have the same nodes as G

> If e = (u,v) is an edge of G with fe < ce,
then G(f) has edge e with capacity ce – fe

> If e = (u,v) is an edge of G with 0 < fe,
then G(f) has an edge e’ = (v,u) with capacity fe

Residual Graph

G G(f)



> Given flow f, define G(f) to have the same nodes as G

> If e = (u,v) is an edge of G with fe < ce,
then G(f) has edge e with capacity ce – fe

> If e = (u,v) is an edge of G with 0 < fe,
then G(f) has an edge e’ = (v,u) with capacity fe

> Can get capacity both from (u,v) and also from (v,u)
– if so, add their capacities in the same direction together
– (only want one edge from u to v)

Residual Graph



let flow f = 0 for every edge
repeat

find an s ~> t path in G(f)
if none exists:

break
else:

let δ = min capacity of any edge on the path
increase flow f by δ along each edge

Ford-Fulkerson

still satisfies both balance and capacity
constraints by previous argument

actually may mean decreasing flow if from a reverse edge

start with a feasible flow

e.g., use DFS or BFS



Ford-Fulkerson



Ford-Fulkerson



Ford-Fulkerson



Ford-Fulkerson



Ford-Fulkerson

10



Ford-Fulkerson

10



Ford-Fulkerson



Ford-Fulkerson



Ford-Fulkerson



Ford-Fulkerson



Ford-Fulkerson



Ford-Fulkerson



> Sometimes called the “augmenting path” algorithm
– paths along which we push more flow are called augmenting paths
– the process of increasing flow along such a path is called an “augmentation”

> Ford-Fulkerson maintains a feasible flow throughout

> It improves the flow through a series of augmentations

> When no augmenting path exists, the flow is optimal
– (still just a claim... we haven’t proven it)

Ford-Fulkerson



> Proof of correctness depends on a concept will discuss next time...

> For today, we will assume this,
and consider what consequences that has...

Ford-Fulkerson Correctness



> Theorem: If all the capacities are integers, then there is a 
maximum flow where each edge flow is integral.

> Proof: Ford-Fulkerson will return an integral flow.
– Feasible flow starts out integral (all zeros).
– Each augmentation increases integral flows by an integer amount

> adjustment is min (capacity – flow) over edges
> if capacities are integers and flows are integers,

then capacity – flow is an integer
> minimum of a set of integers is an integer

– Hence, the flow is always integral, including at the end.

Ford-Fulkerson Application



> Each augmentation takes O(m) time
– O(1) per edge on the path, and at most m edges on the path

> Each iteration increases the value of the flow by at least 1
– (see previous slide)

> If the maximum capacity on any edge is U, then max value is nU
– value is sum of flow on (< n) edges coming into the sink

> Ford-Fulkerson running time is O(nmU)

Ford-Fulkerson Running time



> Ford-Fulkerson running time is O(nmU)

> Q: Is that good?
> A: Yes, if U is small

– in general, Θ(nm) is the best we should hope for
> more on this shortly...
> recall that shortest path also takes Θ(nm) time if negative weights allowed

– so this is essentially optimal if U = O(1)

Ford-Fulkerson Running time



> Ford-Fulkerson running time is O(nmU)

> Q: Is that good?
> A: No, if U is large

– like Knapsack, this is not efficient in the worst case sense
> this is a pseudo-polynomial time algorithm

– even in practice, if U is large, this could be very slow

Ford-Fulkerson Running time



> Not hard to make Ford-Fulkerson truly polynomial...

> Theorem (Edmonds-Karp): If we choose shortest augmenting paths, 
then Ford-Fulkerson runs in O(nm2) time

> Note: that algorithm may not actually be faster in practice
– other heuristics may work better
– e.g., choose the path with the largest resulting augmentation

Ford-Fulkerson Running time



> Maximum Flow
> Applications
> Ford-Fulkerson
> Other Algorithms

Outline for Today



> Capacity scaling
– round capacity 1,234 down to 1,000, then F-F, then 1,200, F-F, 1,230, F-F, etc.

> flow from last F-F is starting point for next... each has less work to do
– requires only O(m log U) augmentations, so running time is O(m2 log U)

> only faster if U >> m/n

> Shortest augmenting path with lazy path construction
– reduce work across multiple shortest path calculations by saving information
– reduces the worst case running time to O(n2m)

> Both together reduce running time to O(nm log U)
– quite good

Improvements to Ford-Fulkerson



> Generic pre-flow push O(n2m)

> FIFO pre-flow push O(n3)
– essentially optimal if m = Θ(n2)

> Excess scaling pre-flow push O(nm + n2 log U)
– essentially optimal if m >> n log U

Other Algorithms



> Dinic’s algorithm O(n2m)

> Dinic’s algorithm + dynamic trees O(nm log n)
– (data structure of Sleator & Tarjan)

> min(Orlin, KRT) O(nm)
– KRT = King, Rao, & Tarjan
– KRT runs in time O(nm logb n), where b = m / (n log n)

> if m >> n log n, then logb n = O(1)
– KRT is O(nm) except for sparse graphs, Orlin is O(nm) on those

Other Algorithms cont.



> Another algorithm is actually fastest in practice...

Other Algorithms cont.



> Unit capacities O(min(n2/3, m1.5))
– breaks the Θ(nm) barrier

> Bipartite graphs O(n1
2 m)

– where node set N = N1 union N2 (two sides)
– some applications (e.g., network testing) have n2 = Θ(n1

2) = O(n)

Algorithms for Special Cases



> Ford-Fulkerson is essentially optimal when U = O(1)

> If a library is available, use it
– may give you either an algorithm that is extremely fast in practice

OR one of the (complex) algorithms with great worst case performance

> If no library is available, start with Ford-Fulkerson
– add capacity scaling and/or lazy shortest paths if necessary
– result is only a log U factor worse than optimal

Max Flow Algorithms Summary


