
CSE 417
Dynamic Programming (pt 6)
Optimizations



> HW5 due today

> HW6 will be posted shortly
– solve a Knapsack-type problem
– many additional wrinkles
– will need some optimization

Reminders



> Apply the steps...
1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you’ll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order

> Key question:
1. Can you solve the problem by combining solutions from sub-problems?

> Count sub-problems to determine running time
– total is number of sub-problems times time per sub-problem

Dynamic Programming Review
optimal substructure: (small) set of solutions,
constructed from solutions to sub-problems
that is guaranteed to include the optimal one



> Previously:
– Find opt substructure by considering how the opt solution could use the last input.

> Given multiple inputs, consider how opt uses last of either or both
> Given clever choice of sub-problems, find opt substructure by considering new options

– Alternatively, consider the shape of the optimal solution in general, e.g., tree structured

> Longest Common Subsequence / Edit Distance:
– opt either uses last of first, last of second, both, or neither
– edit distance is a generalization that allows substitutions & has arbitrary costs

> Pattern Matching
– like max sub-array sum, switch to finding longest ending at each i
– consider how last char of pattern matches: several cases

Review From Previous Lectures



> Space Considerations
> Divide & Conquer
> Sparseness
> Monotonicity

Outline for Today



> Many DP algorithms only need to keep a small part of the table...
– Knapsack only uses 1 .. n-1 with limit V ≤ W for 1 .. n with limit W

> keep just the column of solutions for 1 .. n-1
> O(W) space

– All-pairs shortest path uses solution with intermediate nodes 1 .. k-1 for 1 .. k
> keep all pairs distance
> O(n2) space (rather than O(n3))
> likewise for single-shortest shortest path with negative weights

Simple Space Optimization



> Many DP algorithms only need to keep a small part of the table...
– Knapsack only uses 1 .. n-1 with limit V ≤ W for 1 .. n with limit W
– All-pairs shortest path uses solution with intermediate nodes 1 .. k-1 for 1 .. k
– Longest common subsequence only needs prefixes of

a1, .., an and b1, .., bm that are at most 1 shorter
> can just keep the previous row / column (whichever is smaller)
> O(1) space for pattern matching

– Not just for 2D or 3D tables:
> max sub-array sum only needs 1 .. n-1 for 1 .. n also
> document layout in TeX only needs 1 .. j such that

the words j+1 .. n-1 can fit on one line
> O(1) space

Simple Space Optimization



> Unfortunately, this does apply to many of the others...
– weighted interval scheduling needs (potentially) every prefix of 1 .. n
– optimal breakout trades potentially needs every prefix of 1 .. n
– all problems on trees:

> optimal BSTs, matrix chain multiplication, optimal polygon triangulation
> need to consider every choice of root...

Simple Space Optimization



> Unfortunately, this does apply to many of the others...
– weighted interval scheduling needs (potentially) every prefix of 1 .. n
– optimal breakout trades potentially needs every prefix of 1 .. n
– all problems on trees:

> optimal BSTs, matrix chain multiplication, optimal polygon triangulation
> need to consider every choice of root

> No obvious way to improve space use for these

Simple Space Optimization



> Simple space optimizations only work if we just want opt value
– saw that our formulas for opt value didn’t need earlier parts of the table
– sometimes that is fine: max sub-array sum, edit distance, pattern matching

> Seemingly need whole table to find the solution achieving opt
– often need solution: opt BST, knapsack, shortest path, etc.

Finding Solutions



> Find longest common subsequence of
A = [1, 2, 1, 5, 4, 3]
B = [2, 1, 3, 2, 1, 4]

> Recall our formula
opt value for 1, ..., i and 1, ..., j =

max( opt value for 1, ..., i-1 and 1, ..., j,
opt value for 1, ..., i and 1, ..., j-1,
(opt value for 1, ..., i-1 and 1, ..., j-1) + (1 if ai = bj else 0))

Finding Solution Example

up one row
left one column

up one & left one



Finding Solution Example

2 1 3 2 1 4

0 0 0 0 0 0 0

1 0

2 0

1 0

5 0

4 0

3 0

i

j

no matches with empty lists...



Finding Solution Example

2 1 3 2 1 4

0 0 0 0 0 0 0

1 0 0

2 0 1

1 0 1

5 0 1

4 0 1

3 0 1

i

j

match [2]...



Finding Solution Example

2 1 3 2 1 4

0 0 0 0 0 0 0

1 0 0 1

2 0 1 1

1 0 1 2

5 0 1 2

4 0 1 2

3 0 1 2

i

j

match [2, 1]...



Finding Solution Example

2 1 3 2 1 4

0 0 0 0 0 0 0

1 0 0 1 1

2 0 1 1 1

1 0 1 2 2

5 0 1 2 2

4 0 1 2 2

3 0 1 2 3

i

j

match [2, 1, 3]...



Finding Solution Example

2 1 3 2 1 4

0 0 0 0 0 0 0

1 0 0 1 1 1 2 2

2 0 1 1 1 2 2 2

1 0 1 2 2 2 3 3

5 0 1 2 2 2 3 3

4 0 1 2 2 2 3 4

3 0 1 2 3 3 3 4

i

j



> Table tells us the value of the optimal solution

> Walk backward through table to find solution achieving that value

> Each option from formula describes how the opt solution uses the 
last element(s):

opt value for 1, ..., i and 1, ..., j =
max( opt value for 1, ..., i-1 and 1, ..., j,

opt value for 1, ..., i and 1, ..., j-1,
(opt value for 1, ..., i-1 and 1, ..., j-1) + (1 if ai = bj else 0))

Finding Solution Example

solution doesn’t use ai

solution doesn’t use bj

ai matched to bj



Finding Solution Example

2 1 3 2 1 4

0 0 0 0 0 0 0

1 0 0 1 1 1 2 2

2 0 1 1 1 2 2 2

1 0 1 2 2 2 3 3

5 0 1 2 2 2 3 3

4 0 1 2 2 2 3 4

3 0 1 2 3 3 3 4

i

j



Finding Solution Example

2 1 3 2 1 4

0 0 0 0 0 0 0

1 0 0 1 1 1 2 2

2 0 1 1 1 2 2 2

1 0 1 2 2 2 3 3

5 0 1 2 2 2 3 3

4 0 1 2 2 2 3 4

3 0 1 2 3 3 3 4

i

j



> Simple space optimizations only work if we just want opt value
– saw that our formulas for opt value didn’t need earlier parts of the table

> Seemingly need whole table to find the solution achieving opt
– not an issue for max-subarray sum or pattern matching
– BUT is for all of the others

> Particularly important for computational biology
– DNA similarity (edit distance) and RNA secondary structure
– inputs can be huge

More Space Optimizations



> Space Considerations
> Divide & Conquer
> Sparseness
> Monotonicity

Outline for Today



> Simple optimization allows us to save a lot of space
– e.g., go from O(nm) to O(n) or O(m)

> BUT we seem to lose the ability to get the actual solution
– we usually need that

> In fact, we can get the best of both worlds using prior technique: 
divide & conquer

Finding Solutions by D&C



> Solution comes from the path along which we achieve opt value

> It’s not obvious what sub-problems would be useful...

Finding Solutions by D&C



> It’s not obvious what sub-problems would be useful...
– these two would work IF the optimal solution goes through purple square
– but there is no way to know if it does

Finding Solutions by D&C



> It’s not obvious what sub-problems would be useful...
– these two would work IF the optimal solution goes through purple square...
– but there is no way to know if it does (in fact, it does not in this case)

Finding Solutions by D&C



> Problem: Find out where the opt solution goes through middle col
– if it crosses at (i, m/2), then paths from sub-problem on 1 .. i and 1 .. m/2 and

sub-problem i .. n and m/2 .. m concatenate to give us the full path

Finding Solutions by D&C



> Problem: Find out where the opt solution goes through middle col
– if it crosses at (i, m/2), then paths from sub-problem on 1 .. i and 1 .. m/2 and

sub-problem i .. n and m/2 .. m concatenate to give us the full path

> D&C algorithm:
– find index i where the opt path passes through (i, m/2)
– recursively find opt path on 1 .. i and 1 .. m/2
– recursively find opt path on i .. n and m/2 .. m
– return concatenation of those two paths which meet at (i, m/2)

Finding Solutions by D&C



> Find opt values with DP
> Find opt path with D&C assuming we can solve:

Problem: Find out where the opt solution goes through middle col

> Q: How do we solve this problem?
> A: dynamic programming

Finding Opt Path at Midpoint



> Idea: compute not just the opt value but also
where the opt solution passed through the midpoint

opt-mid at (i,j) =
undefined if j < m/2 (don’t know yet)

i if j = m/2
opt-mid(i’, j’) if j > m/2

where opt solution at (i, j) goes through (i’, j’)
– we know opt solution goes through (i’, j’)  — some sub-problem
– we know opt solution from (i’, j’) crosses mid at opt-mid(i’, j’)

Finding Opt Path at Midpoint



Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
2
1
1
0
0
0

2
2
2
0
0
0

2
0
2
0
0
0

2
2
2
1
1
1

2
2
0
1
0
1

3
3
1
1
1
1

3
3
1
1
0
1

3
3
1
0
2
2

3
3
2
2
2
2

6
5
4
3
2
1

opt values

opt mid-point



Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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Finding Opt Path at Midpoint
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> Compute opt-mid in (at most) same amount of time as opt value
– record not only which value in the set is the min/max but also which one it was
– only changes total running time by a constant factor

> If we can compute the opt value in time t(n) and space s(n),
we can compute the opt solution in time O(t(n) log n) and space s(n)

> Can still save space by keeping only last row / col,
at the cost of O(log n) factor in running time

Finding Solutions by D&C: Summary

can be O(t(n))... see master thm



> Space Considerations
> Divide & Conquer
> Sparseness
> Monotonicity

Outline for Today



> Sometimes, only a fraction of the matrix has useful values
> We have seen one example of this already...

Sparse Tables



> Sometimes, only a fraction of the matrix has useful values
> We have seen one example of this already...

– entries containing rocks are not useful since they cannot be used on a path

Sparse Tables



> Sometimes, only a fraction of the matrix has useful values
– we have seen one example of this already... the robot problem
– entries containing rocks are not useful since they cannot be used on a path

> Save space (and time) by not storing (or computing) these values

Sparse Tables



> Sometimes, only a fraction of the matrix has useful values
– we have seen one example of this already... the robot problem
– entries containing rocks are not useful since they cannot be used on a path

> The robot problem is trying to find the best path in a 
directed acyclic graph (DAG)
– solve that by DP even with negative weights (since no cycles)
– algorithm runs in O(n + m) time for n node, m edge graph

> (note that we need to process nodes in the right order)

> Storing data for nodes save space/time in sparse graphs

Sparse Tables



> Table entries can also be useless in other ways...

Sparseness in LCS



> In longest common subsequence, the only “interesting” table 
entries are those for (i, j) with ai = bj

Sparseness in LCS

2 1 3 2 1 4
0 0 0 0 0 0 0

1 0 0 1 1 1 2 2
2 0 1 1 1 2 2 2
1 0 1 2 2 2 3 3
5 0 1 2 2 2 3 3
4 0 1 2 2 2 3 4
3 0 1 2 3 3 3 4

solution is a path that
only moves in up/left
direction with each step

only place where you
add elements to solution...



> In longest common subsequence, the only “interesting” table 
entries are those for (i, j) with ai = bj

> Could solve the problem by constructing a graph whose nodes are 
the interesting entries
– if there are K such entries, we have K nodes and O(K2) edges
– DAG algorithm finds the best path in O(K2) time
– total time to build and solve is O(n + m + K2)

> put each sequence into a hash table... (or use sort & binary search)
– this is faster provided that K << (nm)0.5

Sparseness in LCS



> In longest common subsequence, the only “interesting” table 
entries are those for (i, j) with ai = bj

> Non-interesting entries are just the max of the values left & above
– applied recursively...
– each such entry is the maximum of the interesting entries above / left
– this is a slow way to solve the problem if there are few interesting entries

Sparseness in LCS



> Knapsack uses a lot of memory... would be nice to have sparseness

> As you’ll see in HW6, however, that is not what happens
– column for prefix 1 .. j stores optimal solution for any subset of items 1– j
– there are 2j such subsets, most of which have distinct values
– the columns quickly become dense

> One special case: all numbers have a common divisor
– then every sum is divisible by that number as well
– so there is no need to store table entries for other numbers

Sparseness in Knapsack



> DP solves shortest path on DAGs in O(n+m) time
– (more details on how to order the nodes in the general case...)

> Can use that to speed up the computation when the entries used 
in the solution are limited to a small subset of “interesting” ones
– for LCS, the optimal path goes through non-interesting entries

BUT those do not contribute anything to the actual solution
– non-interesting entries indicate an element was not used

> Don’t expect sparseness when solutions are subsets
– number of possible subsets grows very quickly

Sparseness Summary



> Space Considerations
> Divide & Conquer
> Sparseness
> Monotonicity

Outline for Today



> There are also some general techniques for improving the
time complexity of DP algorithms in certain cases
– see, e.g., Yao on “quadrangle inequalities”
– see, e.g., Galil & Park on exploiting convexity / concavity

> We will look at the “Knuth optimization”
– probably the most famous of these

Time Optimizations



> This technique applies where our matrix of solutions OPT satisfies:

OPT[i, j-1] ≤ OPT[i, j] ≤ OPT[i+1, j] for all i, j

> This holds for, e.g., the optimal binary search tree problem
– (see Knuth’s “Art of Computer Programming” volume 3)
– this is in no way obvious!

> (in fact, it’s not even true as stated...
true claim is about which element is the root, not the optimal value)

> With that, the optimization is straightforward...

Knuth Optimization



Knuth Optimization

(i, j-1) (i, j)
(i+1, j)

≤ ≤



Knuth Optimization

(i-1, j-2) (i-1, j-1)
(i, j-1) (i, j)

(i+1, j)
≤ ≤

≤ ≤



Knuth Optimization

(i-1, j-2) (i-1, j-1)
(i, j-1) (i, j)

(i+1, j) (i+1, j+1)
(i+2, j+1)

≤ ≤

≤ ≤

≤ ≤

...	≤	OPT[i-1, j-1] ≤	OPT[i,	j]	≤	OPT[i+1,	j+1]	≤	...
and	each	is	limited	to	a	non-overlapping range



> Recall, in optimal BST problem, sub-problems are ranges i .. j

> Base cases are ranges of size 1 (i .. i)

> Solve problem on i .. j using only subranges of i .. j
– in particular, we need only shorter ranges to solve longer ones
– ranges of the same length are along the same diagonal...

Knuth Optimization



Knuth Optimization

1	..	1

2	..	2

3	..	3

4	..	4

5	..	5

6	..	6

7	..	7

size 1...



Knuth Optimization

1	..	1 1 ..	2

2	..	2 2	..	3

3	..	3 3	..	4

4	..	4 4	..	5

5	..	5 5	..	6

6	..	6 6 ..	7

7	..	7

size 2...



Knuth Optimization

1	..	1 1 ..	2 1	..	3

2	..	2 2	..	3 2	..	4

3	..	3 3	..	4 3 ..	5

4	..	4 4	..	5 4	..	6

5	..	5 5	..	6 5	..	7

6	..	6 6 ..	7

7	..	7

size 3...



Knuth Optimization

1	..	1 1 ..	2 1	..	3 1	..	4 1	..	5 1	..	6 1	..	7

2	..	2 2	..	3 2	..	4 2	..	5 2	..	6 2	..	7

3	..	3 3	..	4 3 ..	5 3	.. 6 3	..	7

4	..	4 4	..	5 4	..	6 4	..	7

5	..	5 5	..	6 5	..	7

6	..	6 6 ..	7

7	..	7



> Recall, in optimal BST problem, sub-problems are ranges i .. j
– base cases are ranges of size 1 along the main diagonal
– solve remaining problems along increasing upper diagonals

> Along each diagonal, values can only increase moving down / right
> AND each lies in a non-overlapping range

– OPT[i-1, j-2] to OPT[i, j-1]
– OPT[i, j-1] to OPT[i+1, j]
– OPT[i+1, j] to OPT[i+2, j+1]
– ...

Knuth Optimization



Knuth Optimization

(i-1, j-2) (i-1, j-1)
(i, j-1) (i, j)

(i+1, j) (i+1, j+1)
(i+2, j+1)

≤ ≤

≤ ≤

≤ ≤

...	≤	OPT[i-1, j-1] ≤	OPT[i,	j]	≤	OPT[i+1,	j+1]	≤	...
and	each	is	limited	to	a	non-overlapping range



> Recall, in optimal BST problem, sub-problems are ranges i .. j
– base cases are ranges of size 1 along the main diagonal
– solve remaining problems along increasing upper diagonals

> Along each diagonal, values can only increase
AND each lies in a non-overlapping range

> If all the values are in a range of size O(n),
we can compute them all in O(n) time
– reduces the overall running time from O(n3) to O(n2)

Knuth Optimization


