CSE 417 Dynamic Programming (pt 6) Optimizations

Reminders

> HW5 due today
> HW6 will be posted shortly

- solve a Knapsack-type problem
- many additional wrinkles
- will need some optimization

Dynamic Programming Review

1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you'll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order
> Key question:
4. Can you solve the problem by combining solutions from sub-problems?
> Count sub-problems to determine running time

- total is number of sub-problems times time per sub-problem

Review From Previous Lectures

> Previously:

- Find opt substructure by considering how the opt solution could use the last input.
> Given multiple inputs, consider how opt uses last of either or both
> Given clever choice of sub-problems, find opt substructure by considering new options
- Alternatively, consider the shape of the optimal solution in general, e.g., tree structured
> Longest Common Subsequence / Edit Distance:
- opt either uses last of first, last of second, both, or neither
- edit distance is a generalization that allows substitutions \& has arbitrary costs
> Pattern Matching
- like max sub-array sum, switch to finding longest ending at each i
- consider how last char of pattern matches: several cases

Outline for Today

> Space Considerations
> Divide \& Conquer
> Sparseness
> Monotonicity

Simple Space Optimization

> Many DP algorithms only need to keep a small part of the table...

- Knapsack only uses 1 .. $\mathrm{n}-1$ with limit $\mathrm{V} \leq \mathrm{W}$ for 1 .. n with limit W
> keep just the column of solutions for 1 .. n -1
> O(W) space
- All-pairs shortest path uses solution with intermediate nodes 1 .. k-1 for 1 .. k
> keep all pairs distance
> $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space (rather than $\mathrm{O}\left(\mathrm{n}^{3}\right)$)
> likewise for single-shortest shortest path with negative weights

Simple Space Optimization

> Many DP algorithms only need to keep a small part of the table...

- Knapsack only uses 1 .. $\mathrm{n}-1$ with limit $\mathrm{V} \leq \mathrm{W}$ for 1 .. n with limit W
- All-pairs shortest path uses solution with intermediate nodes 1 .. k-1 for 1 .. k
- Longest common subsequence only needs prefixes of $a_{1}, . ., a_{n}$ and $b_{1}, . ., b_{m}$ that are at most 1 shorter
> can just keep the previous row / column (whichever is smaller)
> O(1) space for pattern matching
- Not just for 2D or 3D tables:
> max sub-array sum only needs 1 .. n -1 for 1 .. n also
> document layout in TeX only needs 1 .. j such that the words $\mathrm{j}+1$.. $\mathrm{n}-1$ can fit on one line
> O(1) space

Simple Space Optimization

> Unfortunately, this does apply to many of the others...

- weighted interval scheduling needs (potentially) every prefix of 1 .. n
- optimal breakout trades potentially needs every prefix of 1 .. n
- all problems on trees:
> optimal BSTs, matrix chain multiplication, optimal polygon triangulation
> need to consider every choice of root...

	A	B	C	D	E	F
1		a	b	c	d	e
$\mathbf{2}$	\mathbf{a}	1	4	10	18	F2
3	\mathbf{b}		2	7	15	26
4	\mathbf{c}			3	10	20
5	\mathbf{d}				4	13
6	\mathbf{e}					5

Simple Space Optimization

> Unfortunately, this does apply to many of the others...

- weighted interval scheduling needs (potentially) every prefix of 1 .. n
- optimal breakout trades potentially needs every prefix of 1 .. n
- all problems on trees:
> optimal BSTs, matrix chain multiplication, optimal polygon triangulation
$>$ need to consider every choice of root
> No obvious way to improve space use for these

Finding Solutions

> Simple space optimizations only work if we just want opt value

- saw that our formulas for opt value didn't need earlier parts of the table
- sometimes that is fine: max sub-array sum, edit distance, pattern matching
> Seemingly need whole table to find the solution achieving opt
- often need solution: opt BST, knapsack, shortest path, etc.

Finding Solution Example

> Find longest common subsequence of

$$
\begin{aligned}
& A=[1,2,1,5,4,3] \\
& B=[2,1,3,2,1,4]
\end{aligned}
$$

> Recall our formula
opt value for $1, \ldots$, i and $1, \ldots, j=$ left one column
max(opt value for $1, \ldots, \mathrm{i}-1$ and $1, \ldots, \mathrm{j}$,
up one \& left one
opt value for $1, \ldots$, i and $1, \ldots, j-1$,
(opt value for $1, \ldots, i-1$ and $1, \ldots, j-1)+\left(1\right.$ if $a_{i}=b_{j}$ else 0$)$)

Finding Solution Example

no matches with empty lists...

		$\mathbf{2}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{4}$
	0	0	0	0	0	0	0
$\mathbf{1}$	0						
$\mathbf{2}$	0						
$\mathbf{1}$	0						
$\mathbf{5}$	0						
$\mathbf{4}$	0						
$\mathbf{3}$	0						

Finding Solution Example

		$\mathbf{2}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{4}$
	0	0	0	0	0	0	0
\mathbf{i}	0	0					
$\mathbf{2}$	0	1					
$\mathbf{1}$	0	1					
$\mathbf{5}$	0	1					
$\mathbf{4}$	0	1					
$\mathbf{3}$	0	1					

match [2]...

Finding Solution Example

		$\mathbf{2}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{4}$
	0	0	0	0	0	0	0
\mathbf{i}	0	0	1				
$\mathbf{2}$	0	1	1				
$\mathbf{1}$	0	1	2				
$\mathbf{5}$	0	1	2				
$\mathbf{4}$	0	1	2				
$\mathbf{3}$	0	1	$\mathbf{2}$				

match [2, 1]...

Finding Solution Example

		$\mathbf{2}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{4}$
	0	0	0	0	0	0	0
\mathbf{i}	0	0	1	1			
$\mathbf{2}$	0	1	1	1			
$\mathbf{1}$	0	1	2	2			
$\mathbf{5}$	0	1	2	2			
$\mathbf{4}$	0	1	2	2			
$\mathbf{3}$	0	1	$\mathbf{2}$	3			

match $[2,1,3] \ldots$

Finding Solution Example

$\mathbf{Z} \mathbf{i}$| | | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{1}$ | 0 | 0 | 1 | 1 | 1 | 2 | 2 |
| $\mathbf{2}$ | 0 | 1 | 1 | 1 | 2 | 2 | 2 |
| $\mathbf{1}$ | 0 | 1 | 2 | 2 | 2 | 3 | 3 |
| $\mathbf{5}$ | 0 | 1 | 2 | 2 | 2 | 3 | 3 |
| $\mathbf{4}$ | 0 | 1 | $\mathbf{2}$ | 2 | 2 | 3 | 4 |
| $\mathbf{3}$ | 0 | 1 | $\mathbf{2}$ | 3 | 3 | 3 | 4 |

Finding Solution Example

> Table tells us the value of the optimal solution
> Walk backward through table to find solution achieving that value
> Each option from formula describes how the opt solution uses the last element(s):
solution doesn't use a_{i}
opt value for $1, \ldots, i$ and $1, \ldots, j=$ solution doesn't use b_{j}
max(opt value for 1, ..., i-1 and 1, ..., j,
a_{i} matched to b_{j}
opt value for $1, \ldots$, i and $1, \ldots, j-1$,
(opt value for $1, \ldots, i-1$ and $1, \ldots, j-1)+\left(1\right.$ if $a_{i}=b_{j}$ else 0$)$)

Finding Solution Example

$\mathbf{j} \mathbf{i}$| | | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{1}$ | 0 | 0 | 1 | 1 | 1 | 2 | 2 |
| $\mathbf{2}$ | 0 | 1 | 1 | 1 | 2 | 2 | 2 |
| $\mathbf{1}$ | 0 | 1 | 2 | 2 | 2 | 3 | 3 |
| $\mathbf{5}$ | 0 | 1 | 2 | 2 | 2 | 3 | 3 |
| $\mathbf{4}$ | 0 | 1 | 2 | 2 | 2 | 3 | 4 |
| $\mathbf{3}$ | 0 | 1 | $\mathbf{2}$ | 3 | 3 | 3 | 4 |

Finding Solution Example

More Space Optimizations

> Simple space optimizations only work if we just want opt value

- saw that our formulas for opt value didn't need earlier parts of the table
> Seemingly need whole table to find the solution achieving opt
- not an issue for max-subarray sum or pattern matching
- BUT is for all of the others
> Particularly important for computational biology
- DNA similarity (edit distance) and RNA secondary structure
- inputs can be huge

Outline for Today

> Space Considerations
> Divide \& Conquer

> Sparseness
> Monotonicity

Finding Solutions by D\&C

> Simple optimization allows us to save a lot of space

- e.g., go from $O(n m)$ to $O(n)$ or $O(m)$
> BUT we seem to lose the ability to get the actual solution
- we usually need that
> In fact, we can get the best of both worlds using prior technique: divide \& conquer

Finding Solutions by D\&C

> Solution comes from the path along which we achieve opt value
> It's not obvious what sub-problems would be useful...

Finding Solutions by D\&C

> It's not obvious what sub-problems would be useful...

- these two would work IF the optimal solution goes through purple square
- but there is no way to know if it does

Finding Solutions by D\&C

> It's not obvious what sub-problems would be useful...

- these two would work IF the optimal solution goes through purple square...
- but there is no way to know if it does (in fact, it does not in this case)

Finding Solutions by D\&C

> Problem: Find out where the opt solution goes through middle col

- if it crosses at (i, m/2), then paths from sub-problem on 1 .. i and 1 .. m/2 and sub-problem $\mathrm{i} . . \mathrm{n}$ and $\mathrm{m} / 2$.. m concatenate to give us the full path

Finding Solutions by D\&C

> Problem: Find out where the opt solution goes through middle col

- if it crosses at (i, m/2), then paths from sub-problem on 1 .. i and 1 .. m/2 and sub-problem i .. n and $\mathrm{m} / 2$.. m concatenate to give us the full path
> D\&C algorithm:
- find index i where the opt path passes through (i, m/2)
- recursively find opt path on 1 .. i and 1 .. m/2
- recursively find opt path on i .. n and $m / 2$.. m
- return concatenation of those two paths which meet at (i, m/2)

Finding Opt Path at Midpoint

> Find opt values with DP
> Find opt path with D\&C assuming we can solve:
Problem: Find out where the opt solution goes through middle col
$>$ Q: How do we solve this problem?
> A: dynamic programming

Finding Opt Path at Midpoint

> Idea: compute not just the opt value but also where the opt solution passed through the midpoint
opt-mid at $(i, j)=$
undefined
i
opt-mid(i', j')

$$
\text { if } \mathrm{j}<\mathrm{m} / 2 \quad \text { (don't know yet) }
$$ where opt solution at (i, j) goes through ($\mathrm{i}^{\prime}, \mathrm{j}^{\prime}$)

- we know opt solution goes through (i^{\prime}, j^{\prime}) - some sub-problem
- we know opt solution from ($\left.i^{\prime}, j^{\prime}\right)$ crosses mid at opt-mid(i', $\left.j^{\prime}\right)$

Finding Opt Path at Midpoint

2	2	2	2	2	3	3	3	3
1	2	0	2	2	3	3	3	3
1	2	2	2	0	1	1	1	2
0	0	0	1	1	1	1	0	2
0	0	0	1	0	1	0	2	2
0	0	0	1	1	1	1	2	2

Finding Opt Path at Midpoint

2	2	2	2	2	3	3	3	3
1	2	0	2	2	3	3	3	3
1	2	2	2	0	1	1	1	2
0	0	0	1	1	1	1	0	2
0	0	0	1	0	1	0	2	2
0	0	0	1	1	1	1	2	2

				6	5			
				5	5			
				4	3			
				3	3			
				2	1			
				1	1			

opt path from purple spot goes left or down

Finding Opt Path at Midpoint

2	2	2	2	2	3	3	3	3
1	2	0	2	2	3	3	3	3
1	2	2	2	0	1	1	1	2
0	0	0	1	1	1	1	0	2
0	0	0	1	0	1	0	2	2
0	0	0	1	1	1	1	2	2

				6	5	5	5	
				5	5	5	5	5
				4	3	3	3	1
				3	3	3		1
				2	1		1	1
				1	1	1	1	1

opt path from purple spot goes left not down

Finding Opt Path at Midpoint

Finding Solutions by D\&C: Summary

> Compute opt-mid in (at most) same amount of time as opt value

- record not only which value in the set is the min/max but also which one it was
- only changes total running time by a constant factor
> If we can compute the opt value in time $t(n)$ and space $s(n)$, we can compute the opt solution in time $O(t(n) \log n)$ and space $s(n)$
> Can still save space by keeping only last row / col, at the cost of $\mathrm{O}(\log \mathrm{n})$ factor in running time

Outline for Today

> Space Considerations
> Divide \& Conquer
> Sparseness
> Monotonicity

Sparse Tables

> Sometimes, only a fraction of the matrix has useful values
> We have seen one example of this already...

Sparse Tables

> Sometimes, only a fraction of the matrix has useful values
> We have seen one example of this already...

- entries containing rocks are not useful since they cannot be used on a path

Sparse Tables

> Sometimes, only a fraction of the matrix has useful values

- we have seen one example of this already... the robot problem
- entries containing rocks are not useful since they cannot be used on a path
> Save space (and time) by not storing (or computing) these values

Sparse Tables

> Sometimes, only a fraction of the matrix has useful values

- we have seen one example of this already... the robot problem
- entries containing rocks are not useful since they cannot be used on a path
> The robot problem is trying to find the best path in a directed acyclic graph (DAG)
- solve that by DP even with negative weights (since no cycles)
- algorithm runs in $O(n+m)$ time for n node, m edge graph
$>$ (note that we need to process nodes in the right order)
> Storing data for nodes save space/time in sparse graphs

Sparseness in LCS

> Table entries can also be useless in other ways...

Sparseness in LCS

only place where you add elements to solution...
> In longest common subsequence, the only "interesting" table entries are those for (i, j) with $\mathrm{a}_{\mathrm{i}}=\mathrm{b}_{\mathrm{j}}$

		$\mathbf{2}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{4}$
	0	0	0	0	0	0	0
$\mathbf{1}$	0	0	1	1	1	2	2
$\mathbf{2}$	0	1	1	1	2	2	2
$\mathbf{1}$	0	1	2	2	2	3	3
$\mathbf{5}$	0	1	2	2	2	3	3
$\mathbf{4}$	0	1	2	2	2	3	4
$\mathbf{3}$	0	1	2	3	3	3	4

solution is a path that only moves in up/left direction with each step

Sparseness in LCS

> In longest common subsequence, the only "interesting" table entries are those for (i, j) with $\mathrm{a}_{\mathrm{i}}=\mathrm{b}_{\mathrm{j}}$
> Could solve the problem by constructing a graph whose nodes are the interesting entries

- if there are K such entries, we have K nodes and $\mathrm{O}\left(\mathrm{K}^{2}\right)$ edges
- DAG algorithm finds the best path in $\mathrm{O}\left(\mathrm{K}^{2}\right)$ time
- total time to build and solve is $\mathrm{O}\left(\mathrm{n}+\mathrm{m}+\mathrm{K}^{2}\right)$
$>$ put each sequence into a hash table... (or use sort \& binary search)
- this is faster provided that $\mathrm{K} \ll(\mathrm{nm})^{0.5}$

Sparseness in LCS

> In longest common subsequence, the only "interesting" table entries are those for (i, j) with $\mathrm{a}_{\mathrm{i}}=\mathrm{b}_{\mathrm{j}}$
> Non-interesting entries are just the max of the values left \& above

- applied recursively...
- each such entry is the maximum of the interesting entries above / left
- this is a slow way to solve the problem if there are few interesting entries

Sparseness in Knapsack

> Knapsack uses a lot of memory... would be nice to have sparseness
> As you'll see in HW6, however, that is not what happens

- column for prefix 1 .. j stores optimal solution for any subset of items 1 - j
- there are 2^{j} such subsets, most of which have distinct values
- the columns quickly become dense
> One special case: all numbers have a common divisor
- then every sum is divisible by that number as well
- so there is no need to store table entries for other numbers

Sparseness Summary

> DP solves shortest path on DAGs in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- (more details on how to order the nodes in the general case...)
> Can use that to speed up the computation when the entries used in the solution are limited to a small subset of "interesting" ones
- for LCS, the optimal path goes through non-interesting entries

BUT those do not contribute anything to the actual solution

- non-interesting entries indicate an element was not used
> Don't expect sparseness when solutions are subsets
- number of possible subsets grows very quickly

Outline for Today

> Space Considerations
> Divide \& Conquer
> Sparseness
> Monotonicity

Time Optimizations

> There are also some general techniques for improving the time complexity of DP algorithms in certain cases

- see, e.g., Yao on "quadrangle inequalities"
- see, e.g., Galil \& Park on exploiting convexity / concavity
> We will look at the "Knuth optimization"
- probably the most famous of these

Knuth Optimization

> This technique applies where our matrix of solutions OPT satisfies:

$$
\text { OPT }[i, j-1] \leq \text { OPT }[i, j] \leq \text { OPT }[i+1, j] \quad \text { for all } i, j
$$

> This holds for, e.g., the optimal binary search tree problem

- (see Knuth's "Art of Computer Programming" volume 3)
- this is in no way obvious!
> (in fact, it's not even true as stated... true claim is about which element is the root, not the optimal value)
> With that, the optimization is straightforward...

Knuth Optimization

W

Knuth Optimization

$(i-1, j-2) \leq(i-1, j-1)$			\cdots	
	i^ $^{\prime}(i, j-1)$	\leq	(i, j)	
		${ }^{I \wedge}(i+1, j)$		

W

Knuth Optimization

| $(i-1, j-2)$ | $(i-1, j-1)$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $I^{\wedge}(i, j-1)$ | \leq | (i, j) | |
| | | ${ }^{I \wedge}(i+1, j)$ | \leq | $(i+1, j+1)$ |
| | | | | $I^{\wedge}(i+2, j+1)$ |

$\ldots \leq$ OPT $[i-1, j-1] \leq$ OPT $[i, j] \leq$ OPT $[i+1, j+1] \leq \ldots$
and each is limited to a non-overlapping range

Knuth Optimization

> Recall, in optimal BST problem, sub-problems are ranges i .. j
> Base cases are ranges of size 1 (i .. i)
> Solve problem on i .. j using only subranges of i .. j

- in particular, we need only shorter ranges to solve longer ones
- ranges of the same length are along the same diagonal...

Knuth Optimization

size 1...

$1 . .1$						
	$2 . .2$					
		$3 . .3$				
			$4 . .4$			
				$5 . .5$		
					$6 . .6$	
						$7 . .7$

Knuth Optimization

size 2...

$1 . .1$	$1 . .2$					
	$2 . .2$	$2 . .3$				
		$3 . .3$	$3 . .4$			
			$4 . .4$	$4 . .5$		
				$5 . .5$	$5 . .6$	
					$6 . .6$	$6 . .7$
						$7 . .7$

Knuth Optimization

size $3 . .$.

$1 . .1$	$1 . .2$	$1 . .3$				
	$2 . .2$	$2 . .3$	$2 . .4$			
		$3 . .3$	$3 . .4$	$3 . .5$		
			$4 . .4$	$4 . .5$	$4 . .6$	
				$5 . .5$	$5 . .6$	$5 . .7$
					$6 . .6$	$6 . .7$
						$7 . .7$

Knuth Optimization

$1 . .1$	$1 . .2$	$1 . .3$	$1 . .4$	$1 . .5$	$1 . .6$	$1 . .7$
	$2 . .2$	$2 . .3$	$2 . .4$	$2 . .5$	$2 . .6$	$2 . .7$
		$3 . .3$	$3 . .4$	$3 . .5$	$3 . .6$	$3 . .7$
			$4 . .4$	$4 . .5$	$4 . .6$	$4 . .7$
				$5 . .5$	$5 . .6$	$5 . .7$
					$6 . .6$	$6 . .7$
						$7 . .7$

Knuth Optimization

> Recall, in optimal BST problem, sub-problems are ranges i .. j

- base cases are ranges of size 1 along the main diagonal
- solve remaining problems along increasing upper diagonals
> Along each diagonal, values can only increase moving down / right
> AND each lies in a non-overlapping range
- OPT[i-1, j-2] to OPT[i, j-1]
- OPT[i, j-1] to OPT[i+1, j]
- OPT[i+1, j] to OPT[i+2, j+1]
- ...

Knuth Optimization

| $(i-1, j-2)$ | $(i-1, j-1)$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $I^{\wedge}(i, j-1)$ | \leq | (i, j) | |
| | | ${ }^{I \wedge}(i+1, j)$ | \leq | $(i+1, j+1)$ |
| | | | | $I^{\wedge}(i+2, j+1)$ |

$\ldots \leq$ OPT $[i-1, j-1] \leq$ OPT $[i, j] \leq$ OPT $[i+1, j+1] \leq \ldots$
and each is limited to a non-overlapping range

Knuth Optimization

> Recall, in optimal BST problem, sub-problems are ranges i .. j

- base cases are ranges of size 1 along the main diagonal
- solve remaining problems along increasing upper diagonals
> Along each diagonal, values can only increase AND each lies in a non-overlapping range
> If all the values are in a range of size $O(n)$, we can compute them all in $O(n)$ time
- reduces the overall running time from $O\left(n^{3}\right)$ to $O\left(n^{2}\right)$

