
CSE 417
Dynamic Programming (pt 5)
Multiple Inputs



> HW5 due Wednesday

Reminders



> Apply the steps...
1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you’ll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order

> Key question:
1. Can you solve the problem by combining solutions from sub-problems?

> Count sub-problems to determine running time
– total is number of sub-problems times time per sub-problem

Dynamic Programming Review
optimal substructure: (small) set of solutions,
constructed from solutions to sub-problems
that is guaranteed to include the optimal one



> Previously:
– Find opt substructure by considering how the opt solution could use the last input.
– Given clever choice of sub-problems, find opt substructure by considering new options

> Tree Structure:
– Sub-problems are left and subtrees
– opt value = min cost of tree over choices of root:
– Problems:

> optimal binary search trees
> matrix chain multiplication
> optimal polygon triangulation (HW5)

Review From Previous Lectures

xi

opt	on
x1,	...,	xi-1

opt	on
xi+1,	...,	xn



> Multiple Inputs Generally
> Longest Common Subsequence
> Edit Distance
> Pattern Matching

Outline for Today



> Have mainly looked at problems whose input is a list of items

> Now, we will look at problems with multiple lists of inputs...

> Can still use the same heuristic to find optimal sub-substructure:
consider how the optimal solution might use the last element

Multiple Inputs



> Can still use the same heuristic to find optimal sub-substructure:
consider how the optimal solution might use the last element

> Difference is that there are multiple last elements
– the last one from each list

> To use the heuristic, consider how opt uses any of the last elements...
– could think about just one or all of them simultaneously
– one approach may work better than the others

Multiple Inputs



> We have seen a similar example already:
the Knapsack problem

> Inputs are:
– list of items, 1 .. n
– price limit W

> Solved every sub-problem of the form
1 .. j and V with j ≤ n and V ≤ W
– total of n(W+1) sub-problem

Multiple Inputs: Knapsack

not a list, but still a separate input

trying to use last pound may not work,
but trying last item works wel



> Multiple Inputs Generally
> Longest Common Subsequence
> Edit Distance
> Pattern Matching

Outline for Today



> Definition: A subsequence of a list a1, ..., an is a list c1, ..., ck, where 
each ci is from the first list and they appear in the same order.

> Note that the indices need not be contiguous:
– sub-sequences not ranges / sub-arrays

> E.g., if A = [3, 8, -5, 0, 23, 4],
then B = [8, 0, 23] is a subsequence (not a subarray)

C = [3, 8, 5] is not a subsequence (no 5 in A)
D = [3, 4, 8] is not a subsequence (8 before 4 in A)

Longest Common Subsequence



> Problem: Given two lists, a1, ..., an and b1, ..., bm, find the longest 
subsequences of the two lists that are identical.
– subsequence 𝑎"#, 𝑎"%, … , 𝑎"' of 𝑎#, 𝑎%, … , 𝑎( and

subsequence 𝑏"#, 𝑏"%, … , 𝑏"' of 𝑏#, 𝑏%, … , 𝑏* with
𝑎"# = 𝑏"#, 𝑎"% = 𝑏"%	, … , 𝑎"' = 𝑏"'

> Example:
– A = [1, 2, 1, 5, 4, 3]
– B = [2, 1, 3, 2, 1, 4]
– [1, 2, 1, 4] is the longest common subsequence

Longest Common Subsequence



> Brute force would take Ω(4min(n,m)) time
– try all ≥ 2min(n,m) subsets of a1, ..., an with length at most min(n,m)
– try all ≥ 2min(n,m) subsets of b1, ..., bm with length at most min(n,m)
– return the longest match found

Longest Common Subsequence



> Brute force would take O(4min(n,m)) time

> Apply dynamic programming...

> Q: How does the opt solution use the last elements (an and bm)?
– could use just an, just bm, both, or neither

Longest Common Subsequence



> Apply dynamic programming...

> Q: How does the opt solution use the last elements (an and bm)?
– uses neither: same as opt on a1, ..., an-1 and b1, ..., bm-1

– uses only an: same as opt on a1, ..., an and b1, ..., bm-1

– uses only bm: same as opt on a1, ..., an-1 and b1, ..., bm

– uses both...
> then we must have an = bm

> rest must be opt on a1, ..., an-1 and b1, ..., bm-1

> opt value = 1 + opt value on a1, ..., an-1 and b1, ..., bm-1
– each common subsequence on a1, ..., an-1 and b1, ..., bm-1

becomes 1 longer by adding an and bm, so opt must use longest of those

Longest Common Subsequence

bm not needed

an not needed



> Apply dynamic programming...
1. Can find opt value for 1, ..., n (a) and 1, ..., m (b) using

(i) opt value for 1, ..., n-1 and 1, ..., m
(ii) opt value for 1, ..., n and 1, ..., m-1
(iii) opt value for 1, ..., n-1 and 1, ..., m-1

2. Need opt values sub-problems on 1, ..., i (a) and1, .., j (b) with i ≤ n and j ≤ m

> (n+1)(m+1) problem to solve
– let i or j be zero (empty prefixes)

Longest common subsequence



> Apply dynamic programming...
1. Can find opt value for 1, ..., n (a) and 1, ..., m (b) using prefixes of each.
2. Need opt values sub-problems on 1, ..., i (a) and1, .., j (b) with i ≤ n and j ≤ m
3. Solve each of these starting with i=0 or j=0

> opt value = 0 if i = 0 or j = 0
> opt value for 1, ..., i and 1, ..., j =

max( opt value for 1, ..., i-1 and 1, ..., j,
opt value for 1, ..., i and 1, ..., j-1,
(opt value for 1, ..., i-1 and 1, ..., j-1) + (1 if ai = bj else 0))

> O(1) per table entry, so O(nm) time all together

Longest common subsequence



> Multiple Inputs Generally
> Longest Common Subsequence
> Edit Distance
> Pattern Matching

Outline for Today



> Problem: Given two lists, a1, ..., an and b1, ..., bm, find the minimum 
cost way to transform a into b using three operations:

1. Change element v to element w at cost αv,w

2. Insert element v at cost βv

3. Delete element v at cost δv

Edit Distance



Edit Distance Example

Edit distance between these two strings (DNA):

> Mismatch at all the blue locations
> Cost of those mismatches is  αC,T + αG,T +  αA,G + 2 αA,C



Edit distance between these two strings (DNA):

> Alternatively:
– insert ”C” at the beginning (top “–”)
– delete “C” in the middle (across from bottom “–”)
– cost is βC + δC + αA,C

Edit Distance Example



> Computational biology (“sequence alignment”)
– measures similarity between DNA (or RNA or proteins)
– cost of insert / delete / change based on likelihood of mutations

> Spell checkers
– cost of insert / delete / change based on likelihood of those mistakes

> Diff tool

> Speech recognition

Edit Distance Applications



> Longest common subsequence:
– insertion and deletion cost 1, changes costs ∞
– for any common subsequence of length k, can first into second by:

> deleting n – k other elements from a
> inserting m – k other elements into b

> Example:
– A = [1, 2, 1, 5, 4, 3]
– B = [2, 1, 3, 2, 1, 4]
– delete 5 & 3 from A to get [1, 2, 1, 4] (common subsequence)
– insert 2 & 3 to this to get B

Edit Distance Applications



> Longest common subsequence:
– insertion and deletion cost 1, changes costs ∞
– for any common subsequence of length k, can first into second by:

> deleting n – k other elements from a
> inserting m – k other elements into b
> total cost is n + m – 2k

– since n + m is constant, minimizing n + m – 2k is maximizing over k

> Edit distance generalizes longest common subsequence
– another example of robustness to problem changes
– also suggests previous solution will work here too...

Edit Distance Applications



> Apply dynamic programming...

> Q: How does the opt solution match the last elements (an and bm)?
– if an = bm: opt value = opt on a1, ..., an-1 and b1, ..., bm-1

– if change: opt value = αv,w + opt on a1, ..., an-1 and b1, ..., bm-1

– if insert bm: opt value = βv + opt on a1, ..., an and b1, ..., bm-1

– if delete an: opt value = δv + opt on a1, ..., an-1 and b1, ..., bm

Edit Distance



> Apply dynamic programming...
1. Can find opt value for 1, ..., n (a) and 1, ..., m (b) using prefixes of each.
2. Need opt values sub-problems on 1, ..., i (a) and1, .., j (b) with i ≤ n and j ≤ m
3. Solve each of these starting with i=0 or j=0

> if i = 0, then opt value = βb1 + ... + βbj

> if j = 0, then opt value = δa1 + ... + δai

> opt value for 1, ..., i and 1, ..., j =
max( αv,w + opt value for 1, ..., i-1 and 1, ..., j-1,

βv + opt value for 1, ..., i and 1, ..., j-1,
δv + opt value for 1, ..., i-1 and 1, ..., j),

where v = ai and w = bj

Edit Distance

set αv,w = 0 when v = w



> Running time is O(nm) as before

> Very easy to implement
– about 10 lines of code (see the textbook)

> Easily implemented in Excel
– filling in a 2D table
– each value is a minimum of 4 others

Edit Distance



> In computation biology, n and m could be very large...
– with n = m = 100k, nm = 10b
– running time is fine since modern machines perform billions of ops per sec
– memory use of 10GB (assuming 1B per entry) is (just) possible

> With n = m = 1,000,000 though:
– running time is okay:  1000B operations in minutes
– memory use of 1TB is not reasonable

> could use disk space, but time would increase by factor of ~1k

> More on this next time...

Foreword: Edit Distance Memory Reqs



> Multiple Inputs Generally
> Longest Common Subsequence
> Edit Distance
> Pattern Matching

Outline for Today



> Problem: Given a content string a1, ..., an and a pattern p1, ..., pm, 
find the longest substring of the content that matches the pattern
according to the following rules:
– ’?’ in the pattern matches any single character of content
– ’*’ in the pattern matches any substring (including an empty one)
– any other letter in the pattern matches only the same letter of content

Pattern Matching



> Content “abcba”
Pattern “a*b”
– longest match is prefix “abcb”

> Content “abcba”
Pattern “b?b”
– longest match is “bcb”

> Content “abcba”
> Pattern “b??a”

– longest match is suffix “bcba”

Pattern Matching Examples



> Common feature of editors and IDEs

> Many also support regular expression matching
– RE matching is part of most standard libraries
– more on that later...

Pattern Matching Applications



> Apply dynamic programming...

> Like max sub-array sum, it will be helpful to change the problem:
find the longest match ending at an
– apply DP to the original problem and you will find you need to solve these
– but these are also sufficient to solve the whole problem

> every match ends somewhere
> longest over the longest ending at a1, ..., an is the longest overall

Pattern Matching



> Apply dynamic programming...
– can consider how either an or pm (or both) is used by the longest match
– turns out to be easiest to think about how pm is used

> in practice, just try all and see what works

> Q: How does the longest match use pm?
> Depends on what pm is

– pm is a letter
– pm is a ‘?’
– pm is a ‘*’

Pattern Matching



> Q: How does the longest match use pm? Depends on what pm is...
– pm is a ‘?’

> if ‘?’ matches am, then p1, ..., pm-1 matches a1, ..., an-1

> longest match is the longest match of 1 .. n-1 with 1 .. m-1

Pattern Matching

abcba

b?



> Q: How does the longest match use pm? Depends on what pm is...
– pm is a ‘?’

> if ‘?’ matches am, then p1, ..., pm-1 matches a1, ..., an-1

> longest match is the longest match of 1 .. n-1 with 1 .. m-1
– pm is a ‘*’

> if ‘*’ matches am, then a1, ..., an-1 either matches p1, ..., pm-1 or p1, ..., pm

Pattern Matching

abcba

a*



> Q: How does the longest match use pm? Depends on what pm is...
– pm is a ‘?’

> if ‘?’ matches am, then p1, ..., pm-1 matches a1, ..., an-1

> longest match is the longest match of 1 .. n-1 with 1 .. m-1
– pm is a ‘*’

> if ‘*’ matches am, then a1, ..., an-1 either matches p1, ..., pm-1 or p1, ..., pm

Pattern Matching

abcba

a*



> Q: How does the longest match use pm? Depends on what pm is...
– pm is a ‘?’

> if ‘?’ matches am, then p1, ..., pm-1 matches a1, ..., an-1

> longest match is the longest match of 1 .. n-1 with 1 .. m-1
– pm is a ‘*’

> if ‘*’ matches am, then a1, ..., an-1 either matches p1, ..., pm-1 or p1, ..., pm

> longest match is the longer of match of 1 .. n-1 with 1 .. m-1 and 1 .. n-1 with 1 .. m

Pattern Matching

actually, this has a problem...

it does not allow the ‘*’ to match nothing



> Q: How does the longest match use pm? Depends on what pm is...
– pm is a ‘?’

> if ‘?’ matches am, then p1, ..., pm-1 matches a1, ..., an-1

> longest match is the longest match of 1 .. n-1 with 1 .. m-1
– pm is a ‘*’

> then either a1, ..., an-1 matches p1, ..., pm or a1, ..., an matches p1, ..., pm-1

> longest match is the longer of match of 1 .. n-1 with 1 .. m and 1 .. n with 1 .. m-1

Pattern Matching

either match an with same pattern
or ‘*’ matches nothing

(can still match multiple characters) 



> Q: How does the longest match use pm? Depends on what pm is...
– pm is a ‘?’

> if ‘?’ matches am, then p1, ..., pm-1 matches a1, ..., an-1

> longest match is the longest match of 1 .. n-1 with 1 .. m-1
– pm is a ‘*’

> then either a1, ..., an-1 matches p1, ..., pm or a1, ..., an matches p1, ..., pm-1

> longest match is the longer of match of 1 .. n-1 with 1 .. m and 1 .. n with 1 .. m-1
– pm is a letter

> if pm matches am, then
longest match is the longest match of 1 .. n-1 with 1 .. m-1

> if pm does not match am, then there is no match

Pattern Matching



> Apply dynamic programming...
1. Can find longest match for 1 .. n (a) and 1 .. m (p) using prefixes of each
2. Need longest match on 1, ..., i (a) and1, .., j (p) with i ≤ n and j ≤ m
3. Solve each of these starting with i=0

> longest match starts at i+1 if j=0
– that indicates the range i+1 .. i, which is empty

> longest match starts at infinity if i=0 (and j > 0)
– that indicates no range

> longest match for 1 .. i and 1 .. j (i > 0 and j > 0) starts at
min of four cases on previous slide
– (if/then’s are better written as code... still very short)
– chose infinity for no range so min will never choose it if a match exists

Pattern Matching



> Apply dynamic programming...
1. Can find longest match for 1 .. n (a) and 1 .. m (p) using prefixes of each
2. Need longest match on 1, ..., i (a) and1, .., j (p) with i ≤ n and j ≤ m
3. Solve each of these starting with i=0

> (n+1)(m+1) entries in table, and O(1) time per entry,
so total running time is O(nm)
– in practice, n >> m (say, m ≤ 100), so this is O(n)

> Only needs O(m) memory
– only need column for i-1 to compute i, so just keep prev column
– this is why we started with i=0 rather than j=0

Pattern Matching



> Regular expressions greatly generalize these simple patterns

> However, the matching algorithm is largely unchanged
– prefixes of the pattern are replaced with states of the NFSM
– for our simple patterns, this produces the same result because states of the 

equivalent NFSM are in 1–to–1 correspondence with prefixes
– for more general patterns, that is longer the case, so it becomes necessary to 

determine the NFSM states

Regular Expression Matching
(out of scope)


