CSE 417 Dynamic Programming (pt 5) Multiple Inputs

UNIVERSITY of WASHINGTON

Reminders

> HW5 due Wednesday

Dynamic Programming Review

> Apply the steps...

optimal substructure: (small) set of solutions, constructed from solutions to sub-problems that is guaranteed to include the optimal one

- 1. Describe solution in terms of solution to *any* sub-problems
- 2. Determine all the sub-problems you'll need to apply this recursively
- 3. Solve every sub-problem (once only) in an appropriate order

> Key question:

- 1. Can you solve the problem by combining solutions from sub-problems?
- > Count sub-problems to determine running time
 - total is number of sub-problems times time per sub-problem

Review From Previous Lectures

> **Previously:**

- Find opt substructure by considering how the opt solution could use the last input.
- Given clever choice of sub-problems, find opt substructure by considering new options

> Tree Structure:

- Sub-problems are left and subtrees
- opt value = min cost of tree over choices of root:
- Problems:
 - > optimal binary search trees
 - > matrix chain multiplication
 - > optimal polygon triangulation (HW5)

Outline for Today

> Multiple Inputs Generally

- > Longest Common Subsequence
- > Edit Distance
- > Pattern Matching

Multiple Inputs

- > Have mainly looked at problems whose input is a list of items
- > Now, we will look at problems with multiple lists of inputs...
- > Can still use the same heuristic to find optimal sub-substructure: consider how the optimal solution might use the last element

Multiple Inputs

- > Can still use the same heuristic to find optimal sub-substructure: consider how the optimal solution might use the last element
- > Difference is that there are multiple last elements
 - the last one from each list
- > To use the heuristic, consider how opt uses any of the last elements...
 - could think about just one or all of them simultaneously
 - one approach may work better than the others

Multiple Inputs: Knapsack

- > We have seen a similar example already: the Knapsack problem
- > Inputs are:
 - list of items, 1.. n

 - price limit W _____ not a list, but still a separate input
- > Solved every sub-problem of the form
 - 1... j and V with $j \le n$ and $V \le W$
 - total of n(W+1) sub-problem

trying to use last pound may not work, but trying last item works wel

Outline for Today

- > Multiple Inputs Generally
- > Longest Common Subsequence 🤇 🧫

- > Edit Distance
- > Pattern Matching

- > **Definition**: A subsequence of a list $a_1, ..., a_n$ is a list $c_1, ..., c_k$, where each c_i is from the first list and they appear in the *same order*.
- > Note that the indices need **not** be **contiguous**:
 - sub-sequences not ranges / sub-arrays

> E.g., if A = [3, 8, -5, 0, 23, 4], then B = [8, 0, 23] is a subsequence (not a subarray) C = [3, 8, 5] is **not** a subsequence (no 5 in A) D = [3, 4, 8] is **not** a subsequence (8 before 4 in A)

- > Problem: Given two lists, a₁, ..., a_n and b₁, ..., b_m, find the longest subsequences of the two lists that are identical.
 - subsequence $a_{i_1}, a_{i_2}, \dots, a_{i_k}$ of a_1, a_2, \dots, a_n and subsequence $b_{i_1}, b_{i_2}, \dots, b_{i_k}$ of b_1, b_2, \dots, b_m with $a_{i_1} = b_{i_1}, a_{i_2} = b_{i_2}, \dots, a_{i_k} = b_{i_k}$
- > Example:
 - A = [1, 2, 1, 5, 4, 3]
 - B = [2, 1, 3, 2, 1, 4]
 - [1, 2, 1, 4] is the longest common subsequence

> Brute force would take $\Omega(4^{\min(n,m)})$ time

- try all $\ge 2^{\min(n,m)}$ subsets of $a_1, ..., a_n$ with length at most min(n,m)
- − try all $\ge 2^{\min(n,m)}$ subsets of $b_1, ..., b_m$ with length at most min(n,m)
- return the longest match found

W

- > Brute force would take O(4^{min(n,m)}) time
- > Apply dynamic programming...
- > **Q**: How does the opt solution use the last elements (a_n and b_m)?
 - could use just a_n , just b_m , both, or neither

> Apply dynamic programming...

> **Q**: How does the opt solution use the last elements $(a_n \text{ and } b_m)$?

- same as opt on a_1 , ..., a_{n-1} and b_1 , ..., b_{m-1} – uses neither:
- uses only a_n : same as opt on $a_1, ..., a_n$ and $b_1, ..., b_{m-1} \leftarrow b_m$ not needed
- same as opt on $a_1, ..., a_{n-1}$ and $b_1, ..., b_m \longrightarrow a_n$ not needed – uses only b_m:

- uses both...
 - > then we must have $a_n = b_m$
 - > rest must be opt on $a_1, ..., a_{n-1}$ and $b_1, ..., b_{m-1}$
 - > opt value = 1 + opt value on $a_1, ..., a_{n-1}$ and $b_1, ..., b_{m-1}$
 - each common subsequence on $a_1, ..., a_{n-1}$ and $b_1, ..., b_{m-1}$ becomes 1 longer by adding an and bm, so opt must use longest of those

- > Apply dynamic programming...
 - 1. Can find opt value for 1, ..., n (a) and 1, ..., m (b) using (i) opt value for 1, ..., n-1 and 1, ..., m
 - (ii) opt value for 1, ..., n and 1, ..., m-1
 - (iii) opt value for 1, ..., n-1 and 1, ..., m-1
 - 2. Need opt values sub-problems on 1, ..., i (a) and 1, ..., j (b) with i \leq n and j \leq m
- > (n+1)(m+1) problem to solve
 - let i or j be zero (empty prefixes)

- > Apply dynamic programming...
 - 1. Can find opt value for 1, ..., n (a) and 1, ..., m (b) using prefixes of each.
 - 2. Need opt values sub-problems on 1, ..., i (a) and 1, ..., j (b) with $i \le n$ and $j \le m$
 - 3. Solve each of these starting with i=0 or j=0

```
> opt value = 0 if i = 0 or j = 0
```

```
> opt value for 1, ..., i and 1, ..., j =
max( opt value for 1, ..., i-1 and 1, ..., j,
opt value for 1, ..., i and 1, ..., j-1,
(opt value for 1, ..., i-1 and 1, ..., j-1) + (1 if a<sub>i</sub> = b<sub>j</sub> else 0))
```

> O(1) per table entry, so O(nm) time all together

Outline for Today

- > Multiple Inputs Generally
- > Longest Common Subsequence
- > Edit Distance 🤇 🧫
- > Pattern Matching

- > Problem: Given two lists, a₁, ..., a_n and b₁, ..., b_m, find the minimum cost way to transform a into b using three operations:
 - 1. Change element v to element w at cost $\alpha_{v,w}$
 - 2. Insert element v at cost β_v
 - 3. Delete element v at cost δ_v

Edit Distance Example

Edit distance between these two strings (DNA):

- > Mismatch at all the blue locations
- > Cost of those mismatches is $\alpha_{C,T}$ + $\alpha_{G,T}$ + $\alpha_{A,G}$ + 2 $\alpha_{A,C}$

Edit Distance Example

Edit distance between these two strings (DNA):

> Alternatively:

- insert "C" at the beginning (top "-")
- delete "C" in the middle (across from bottom "-")
- cost is $\beta_{C} + \delta_{C} + \alpha_{A,C}$

Edit Distance Applications

> Computational biology ("sequence alignment")

- measures similarity between DNA (or RNA or proteins)
- cost of insert / delete / change based on likelihood of mutations
- > Spell checkers
 - cost of insert / delete / change based on likelihood of those mistakes
- > Diff tool
- > Speech recognition

Edit Distance Applications

> Longest common subsequence:

- insertion and deletion cost 1, changes costs ∞
- for any common subsequence of length k, can first into second by:
 - > deleting n k other elements from a
 - > inserting m k other elements into b
- > Example:
 - A = [1, 2, 1, 5, 4, 3]
 - B = [2, 1, 3, 2, 1, 4]
 - delete 5 & 3 from A to get [1, 2, 1, 4] (common subsequence)
 - insert 2 & 3 to this to get B

Edit Distance Applications

> Longest common subsequence:

- insertion and deletion cost 1, changes costs ∞
- for any common subsequence of length k, can first into second by:
 - > deleting n k other elements from a
 - > inserting m k other elements into b
 - > total cost is n + m 2k
- since n + m is constant, minimizing n + m 2k is maximizing over k
- > Edit distance generalizes longest common subsequence
 - another example of robustness to problem changes
 - also suggests previous solution will work here too...

> Apply dynamic programming...

> **Q**: How does the opt solution *match* the last elements $(a_n \text{ and } b_m)$?

- if $a_n = b_m$: opt value = opt on $a_1, ..., a_{n-1}$ and $b_1, ..., b_{m-1}$
- if change: opt value = $\alpha_{v,w}$ + opt on $a_1, ..., a_{n-1}$ and $b_1, ..., b_{m-1}$
- if insert b_m : opt value = β_v + opt on a_1 , ..., a_n and b_1 , ..., b_{m-1}
- if delete a_n : opt value = δ_v + opt on a_1 , ..., a_{n-1} and b_1 , ..., b_m

- > Apply dynamic programming...
 - 1. Can find opt value for 1, ..., n (a) and 1, ..., m (b) using prefixes of each.
 - 2. Need opt values sub-problems on 1, ..., i (a) and 1, ..., j (b) with $i \le n$ and $j \le m$

W

3. Solve each of these starting with i=0 or j=0

> if i = 0, then opt value =
$$\beta_{b1}$$
 + ... + β_{bj}
> if j = 0, then opt value = δ_{a1} + ... + δ_{ai}
> opt value for 1, ..., i and 1, ..., j = max($\alpha_{v,w}$ + opt value for 1, ..., i-1 and 1, ..., j-1, β_v + opt value for 1, ..., i and 1, ..., j-1, δ_v + opt value for 1, ..., i-1 and 1, ..., j), where v = a_i and w = b_j

> Running time is O(nm) as before

- > Very easy to implement
 - about 10 lines of code (see the textbook)
- > Easily implemented in Excel
 - filling in a 2D table
 - each value is a minimum of 4 others

Foreword: Edit Distance Memory Reqs

- > In computation biology, n and m could be very large...
 - with n = m = 100k, nm = 10b
 - running time is fine since modern machines perform billions of ops per sec
 - memory use of 10GB (assuming 1B per entry) is (just) possible
- > With n = m = 1,000,000 though:
 - running time is okay: 1000B operations in minutes
 - memory use of 1TB is not reasonable
 - > could use disk space, but time would increase by factor of ~1k
- > More on this next time...

Outline for Today

- > Multiple Inputs Generally
- > Longest Common Subsequence
- > Edit Distance

> Pattern Matching 🛛 🖕

- > Problem: Given a content string a₁, ..., a_n and a pattern p₁, ..., p_m, find the longest substring of the content that matches the pattern according to the following rules:
 - '?' in the pattern matches any single character of content
 - '*' in the pattern matches any substring (including an empty one)
 - any other letter in the pattern matches only the *same* letter of content

W

Pattern Matching Examples

- > Content "abcba" Pattern "a*b"
 - longest match is prefix "abcb"
- > Content "abcba" Pattern "b?b"
 - longest match is "bcb"
- > Content "abcba"
- > Pattern "b??a"
 - longest match is suffix "bcba"

Pattern Matching Applications

- > Common feature of editors and IDEs
- > Many also support regular expression matching
 - RE matching is part of most standard libraries
 - more on that later...

> Apply dynamic programming...

- > Like max sub-array sum, it will be helpful to change the problem: find the longest match **ending at a_n**
 - apply DP to the original problem and you will find you need to solve these
 - but these are also sufficient to solve the whole problem
 - > every match ends somewhere
 - > longest over the longest ending at $a_1, ..., a_n$ is the longest overall

W

> Apply dynamic programming...

- can consider how either a_n or p_m (or both) is used by the longest match

M

- turns out to be easiest to think about how p_m is used
 in practice, just try all and see what works
- > **Q**: How does the longest match use p_m?
- > Depends on what p_m is
 - p_m is a letter
 - p_m is a '?'
 - p_m is a '*'

> **Q**: How does the longest match use p_m ? Depends on what p_m is...

- p_m is a '?'
 - > if '?' matches a_m , then $p_1, ..., p_{m-1}$ matches $a_1, ..., a_{n-1}$
 - > longest match is the longest match of 1 .. n-1 with 1 .. m-1

> **Q**: How does the longest match use p_m ? Depends on what p_m is...

- p_m is a '?'
 - > if '?' matches a_m , then $p_1, ..., p_{m-1}$ matches $a_1, ..., a_{n-1}$
 - > longest match is the longest match of 1 .. n-1 with 1 .. m-1
- p_m is a '*'

> if '*' matches a_m , then a_1 , ..., a_{n-1} either matches p_1 , ..., p_{m-1} or p_1 , ..., p_m

> **Q**: How does the longest match use p_m ? Depends on what p_m is...

- p_m is a '?'
 - > if '?' matches a_m , then $p_1, ..., p_{m-1}$ matches $a_1, ..., a_{n-1}$
 - > longest match is the longest match of 1 .. n-1 with 1 .. m-1
- p_m is a '*'

> if '*' matches a_m , then a_1 , ..., a_{n-1} either matches p_1 , ..., p_{m-1} or p_1 , ..., p_m

> **Q**: How does the longest match use p_m ? Depends on what p_m is...

- p_m is a '?'
 - > if '?' matches a_m , then $p_1, ..., p_{m-1}$ matches $a_1, ..., a_{n-1}$
 - > longest match is the longest match of 1 .. n-1 with 1 .. m-1
- p_m is a '*'
 - > if '*' matches a_m , then a_1 , ..., a_{n-1} either matches p_1 , ..., p_{m-1} or p_1 , ..., p_m
 - > longest match is the longer of match of 1 .. n-1 with 1 .. m-1 and 1 .. n-1 with 1 .. m

actually, this has a problem...

it does not allow the '*' to match nothing

> **Q**: How does the longest match use p_m ? Depends on what p_m is...

- p_m is a '?'
 - > if '?' matches a_m , then $p_1, ..., p_{m-1}$ matches $a_1, ..., a_{n-1}$
 - > longest match is the longest match of 1 .. n-1 with 1 .. m-1
- p_m is a '*'
 - > then **either** $a_1, ..., a_{n-1}$ matches $p_1, ..., p_m$ **or** $a_1, ..., a_n$ matches $p_1, ..., p_{m-1}$
 - > longest match is the longer of match of 1 .. n-1 with 1 .. m and 1 .. n with 1 .. m-1

either match a_n with same pattern **or** '*' matches nothing (can still match multiple characters)

> **Q**: How does the longest match use p_m ? Depends on what p_m is...

- p_m is a '?'
 - > if '?' matches a_m , then $p_1, ..., p_{m-1}$ matches $a_1, ..., a_{n-1}$
 - > longest match is the longest match of 1 .. n-1 with 1 .. m-1
- p_m is a '*'
 - > then either a_1 , ..., a_{n-1} matches p_1 , ..., p_m or a_1 , ..., a_n matches p_1 , ..., p_{m-1}
 - > longest match is the longer of match of 1 .. n-1 with 1 .. m and 1 .. n with 1 .. m-1
- p_m is a letter
 - > if p_m matches a_m , then
 - longest match is the longest match of 1 .. n-1 with 1 .. m-1
 - > if p_m does not match a_m , then there is no match

- > Apply dynamic programming...
 - 1. Can find longest match for 1 .. n (a) and 1 .. m (p) using prefixes of each
 - 2. Need longest match on 1, ..., i (a) and 1, ..., j (p) with $i \le n$ and $j \le m$
 - 3. Solve each of these starting with i=0
 - > longest match starts at i+1 if j=0
 - that indicates the range i+1 .. i, which is *empty*
 - > longest match starts at infinity if i=0 (and j > 0)
 - that indicates *no range*
 - > longest match for 1 .. i and 1 .. j (i > 0 and j > 0) starts at min of four cases on previous slide
 - (if/then's are better written as code... still very short)
 - chose infinity for no range so min will *never* choose it if a match exists

- > Apply dynamic programming...
 - 1. Can find longest match for 1 .. n (a) and 1 .. m (p) using prefixes of each
 - 2. Need longest match on 1, ..., i (a) and 1, ..., j (p) with $i \le n$ and $j \le m$
 - 3. Solve each of these starting with i=0
- > (n+1)(m+1) entries in table, and O(1) time per entry, so total running time is O(nm)
 - in practice, n >> m (say, m \leq 100), so this is O(n)
- > Only needs O(m) memory
 - only need column for i-1 to compute i, so just keep prev column
 - this is why we started with i=0 rather than j=0

Regular Expression Matching (out of scope)

> Regular expressions greatly generalize these simple patterns

- > However, the matching algorithm is largely unchanged
 - prefixes of the pattern are replaced with states of the NFSM
 - for our simple patterns, this produces the same result because states of the equivalent NFSM are in 1-to-1 correspondence with prefixes
 - for more general patterns, that is longer the case, so it becomes necessary to determine the NFSM states

W