CSE 417
Dynamic Programming (pt 5)

Multiple Inputs

Dynamic Programming Review

optimal substructure: (small) set of solutions,
constructed from solutions to sub-problems

> Apply the StepS that is guaranteed to include the optimal one

1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you’ll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order

> Key question:
1. Can you solve the problem by combining solutions from sub-problems?

> Count sub-problems to determine running time
— total is number of sub-problems times time per sub-problem

Review From Previous Lectures

> Previously:

— Find opt substructure by considering how the opt solution could use the last input.
— Given clever choice of sub-problems, find opt substructure by considering new options

> Tree Structure:

— Sub-problems are left and subtrees @
— opt value = min cost of tree over choices of root:
— Problems:

> optimal binary search trees
> matrix chain multiplication
> optimal polygon triangulation (HW5) opt on opt on

Xiy ooy Xig Xiggy oeer X

n

Multiple Inputs

> Have mainly looked at problems whose input is a list of items
> Now, we will look at problems with multiple lists of inputs...

> Can still use the same heuristic to find optimal sub-substructure:
consider how the optimal solution might use the last element

Multiple Inputs

> Can still use the same heuristic to find optimal sub-substructure:
consider how the optimal solution might use the last element

> Difference is that there are multiple last elements
— the last one from each list

> To use the heuristic, consider how opt uses any of the last elements...
— could think about just one or all of them simultaneously
— one approach may work better than the others

Multiple Inputs: Knapsack

> We have seen a similar example already:
the Knapsack problem

1 1

1
2 6 2
> |nputs are:
, . 3 18 5
— listofitems, 1..n
— price limit W . | | 4 22 6
not a list, but still a separate input
5 28 7

> Solved every sub-problem of the form
1..jandVwithj<snandV<sW

— total of n(W+1) sub-problem trying to use last pound may not work,
but trying last item works wel

Longest Common Subsequence

> Definition: A subsequence of a list a,, ..., a, is a list ¢;, ..., ¢,, where
each ¢; is from the first list and they appear in the same order,

> Note that the indices need not be contiguous:
— sub-sequences not ranges / sub-arrays

> E.g., ifA=13,8,-5,0, 23, 4],
then B =[8, 0, 23] is a subsequence (not a subarray)
C =[3, 8, 5] is not a subsequence (no 5in A)
D =[3, 4, 8] is not a subsequence (8 before 4in A)

Longest Common Subsequence

> Problem: Given two lists, a4, ..., a, and by, ..., b, find the longest
subsequences of the two lists that are identical.

— subsequence a;,q;,...,a; of aj,ay,...,a, and
subsequence b; , b; , ..., b; Of by, by, ..., by, With
Cll'1 = bi1’ Cll'2 = bi2 PR Clik = bik
> Example:
- A=[1,2,1,5,4, 3]
- B=1[2,1,3,2,1,4]
— [1,2,1,4]is the longest common subsequence

Longest Common Subsequence

> Brute force would take Q(4min(nm) time
— try all > 2min(hm) sybsets of a4, ..., a, with length at most min(n,m)
— try all > 2min(nm) sybsets of b, ..., b, with length at most min(n,m)
— return the longest match found

Longest Common Subsequence

> Brute force would take O(4min(nm) time
> Apply dynamic programming...

> Q: How does the opt solution use the last elements (a,, and b,,)?
— could use just a,, just b, both, or neither

Longest Common Subsequence

> Apply dynamic programming...

> Q: How does the opt solution use the last elements (a,, and b,)?
— uses neither: sameasoptonay, ..., a,,andb;,, ..., b1
— usesonlya, sameasoptonay,..,a,and by, ..., b

b, not needed
— usesonlyb,,: sameasoptonay,..,a,andDb;, .., b,

a, not needed

— uses both...
> then we must have a, = b,
> rest must be opton ay, ..., a,; and by, ..., by

> optvalue=1+optvalueon ay, ..., a,s and by, ..., by

— each common subsequence on a;, ..., a5, and by, ..., by
becomes 1 longer by adding a,, and b,,,, so opt must use longest of those

Longest common subsequence

> Apply dynamic programming...
1. Canfind optvalue for 1, ..., n(a)and 1, ..., m (b) using
(i) opt value for 1, ..., n-1and 1, ..., m

(ii) opt value for 1, ..., nand 1, ..., m-1
(iii) opt value for 1, ..., n-1 and 1, ..., m-1

2. Need opt values sub-problems on 1, ...,i(a) and1, .., j(b) withi<nandj<m

> (n+1)(m+1) problem to solve
— letiorjbe zero (empty prefixes)

Longest common subsequence

> Apply dynamic programming...

. Canfind opt value for 1, ..., n(a) and 1, ..., m (b) using prefixes of each.
. Need opt values sub-problems on 1, ...,i(a) and1, ..,j(b)withi<nandj<m
. Solve each of these starting with i=0 or j=0
> optvalue=0ifi=0orj=0
> optvaluefor1,..iand1,..j=
max(opt value for 1, ...,i-1and 1, ..., j,

opt value for 1, ...,iand 1, ..., j-1,
(optvalue for 1, ..., i-1 and 1, ..., j-1) + (1 if a; = b; else 0))

A
1
2
3

> O(1) per table entry, so O(nm) time all together

Edit Distance

> Problem: Given two lists, a4, ..., a, and by, ..., b, find the minimum
cost way to transform a into b using three operations:
1. Change element v to element w at cost a,,,
2. Insert element v at cost B,
3. Delete element v at cost §,

Edit Distance Example

Edit distance between these two strings (DNA):

- o | c CIENRNES : E
-ARAN: - » -

> Mismatch at all the blue locations

> Cost of those mismatchesis act+ g+ Oag*+ 2 Aac w

Edit Distance Example

Edit distance between these two strings (DNA):

-CTGACCTACT
ccroacl:acil-

> Alternatively:
— insert"C" at the beginning (top “-"
— delete “C" in the middle (across from bottom “-")
— Costis B+ &¢ + Qpc

Edit Distance Applications

>

>

>

>

Computational biology (“sequence alignment”)
— measures similarity between DNA (or RNA or proteins)
— cost of insert / delete / change based on likelihood of mutations

Spell checkers
— cost of insert / delete / change based on likelihood of those mistakes

Diff tool

Speech recognition

Edit Distance Applications

> Longest common subsequence:
— insertion and deletion cost 1, changes costs

— for any common subsequence of length k, can first into second by:
> deleting n - k other elements from a
> inserting m - k other elements into b

> Example:
- A=[1,2,1,5,4, 3]
- B=[2,1,3,21,4]
— delete 5 & 3 from Atoget[1, 2, 1, 4] (common subsequence)
— insert 2 & 3 to this to get B

Edit Distance Applications

> Longest common subsequence:
— insertion and deletion cost 1, changes costs

— for any common subsequence of length k, can first into second by:
> deleting n - k other elements from a
> inserting m - k other elements into b
> total costisn+m -2k

— since n + mis constant, minimizing n + m - 2k is maximizing over k

> Edit distance generalizes longest common subsequence

— another example of robustness to problem changes
— also suggests previous solution will work here too...

Edit Distance

> Apply dynamic programming...

> Q: How does the opt solution match the last elements (a,, and b,,)?

— ifa,=b.: opt value =opton a;, ..., a1 and by, ..., b4
— if change: opt value = a,,, + opton ay, ..., a4 and by, ..., b4
— ifinsert b, opt value = 3, + opt on a;, ..., a, and b, ..., b

— if delete a,; opt value =6, + opton ay, ..., a; and by, ..., b,

Edit Distance

> Apply dynamic programming...
1. Can find opt value for 1, ..., n (@) and 1, ..., m (b) using prefixes of each.
2. Need opt values sub-problems on 1, ...,i(a) and1, .., j(b) withi<nandj<m
3. Solve each of these starting with i=0 or j=0

> ifi =0, then opt value = By +... + By,
> if j=0, then opt value =&, + ... + &

> optvaluefor1,..iand1,..,j= seta,, =0whenv=w
max(a,,, + opt value for 1, ...,i-1and 1, ..., j-1,
B, + optvalue for1,..,iand 1, .., j-1,
6, + optvalue for 1, ..., i-1 and 1, ..., j),

where v =a;and w = b

Edit Distance

> Running time is O(nm) as before

> Very easy to implement
— about 10 lines of code (see the textbook)

> Easily implemented in Excel
— filling in a 2D table
— eachvalue is a minimum of 4 others

Foreword: Edit Distance Memory Reqs

> In computation biology, n and m could be very large...
— with n=m =100k, nm = 10b
— running time is fine since modern machines perform billions of ops per sec
— memory use of 10GB (assuming 1B per entry) is (just) possible

> With n=m = 1,000,000 though:
— running time is okay: 1000B operations in minutes

— memory use of 1TB is not reasonable
> could use disk space, but time would increase by factor of ~1k

> More on this next time...

Pattern Matching

> Problem: Given a content string a,, ..., a, and a pattern py, ..., Pr
find the longest substring of the content that matches the pattern
according to the following rules:
— "?"in the pattern matches any single character of content
— "*in the pattern matches any substring (including an empty one)
— any other letter in the pattern matches only the same letter of content

Pattern Matching Examples

> Content “abcba”

Pattern “a*p”
— longest match is prefix “abcb”

> Content “abcba”

Pattern “b7b”
— longest match is “bcb”

> Content “abcba”

> Pattern “b7?7a"
— longest match is suffix “bcba”

Pattern Matching Applications

> Common feature of editors and IDEs

> Many also support regular expression matching
— RE matching is part of most standard libraries
— more on that later...

Pattern Matching

> Apply dynamic programming...

> Like max sub-array sum, it will be helpful to change the problem:
find the longest match ending at a,
— apply DP to the original problem and you will find you need to solve these

— but these are also sufficient to solve the whole problem
> every match ends somewhere
> longest over the longest ending at ay, ..., a, is the longest overall

Pattern Matching

> Apply dynamic programming...
— can consider how either a, or p,, (or both) is used by the longest match

— turns out to be easiest to think about how p,,, is used
> in practice, just try all and see what works

> Q: How does the longest match use p,?

> Depends on what p,, is
— P is aletter
- Ppynisa”?
— pgpisa™

Pattern Matching

> Q: How does the longest match use p,,? Depends on what p, is...
- pgisa’?
> if ?" matches a,,, then p;, ..., pm.1 Matches ay, ..., a,
> longest match is the longest match of 1 .. n-1 with 1 .. m-1

abcba
——

b?

Pattern Matching

> Q: How does the longest match use p,,? Depends on what p, is...
- pgisa?
> if ?" matches a,,, then p;, ..., pm.1 Matches ay, ..., a,
> longest match is the longest match of 1 .. n-1 with 1 .. m-1

— Ppmisa™
> if * matches a,, then a,, ..., a,; either matches p;, ..., pm.1 OF P4, .., Pm
abcba
|_'_l

a*

Pattern Matching

> Q: How does the longest match use p,,? Depends on what p, is...
- pgisa?
> if ?" matches a,,, then p;, ..., pm.1 Matches ay, ..., a,
> longest match is the longest match of 1 .. n-1 with 1 .. m-1

— Ppmisa™
> if * matches a,, then a,, ..., a,; either matches p;, ..., pm.1 OF P4, .., Pm
abcba
|_'__l

a*

Pattern Matching

> Q: How does the longest match use p,,? Depends on what p, is...
- pgisa?
> if ?" matches a,,, then p;, ..., pm.1 Matches ay, ..., a,
> longest match is the longest match of 1 .. n-1 with 1 .. m-1
— pgpisa™
> if ¥ matches a,, then a, ..., a,.; either matches p1, ..., Pt OF P1, - P
> longest match is the longer of match of 1 .. n-1with1..m-1Tand 1..n-1with1..m

actually, this has a problem...
it does not allow the * to match nothing

Pattern Matching

> Q: How does the longest match use p,,? Depends on what p, is...
- pgisa?
> if ?" matches a,,, then p;, ..., pm.1 Matches ay, ..., a,
> longest match is the longest match of 1 .. n-1 with 1 .. m-1
— pgpisa™
> then either a,, ..., a,,; matches py, ..., p, OF a4, ..., @, matches py, ..., Pm-1
> |longest match is the longer of match of 1 .. n-1 with1..mand 1..nwith 1.. m-1

either match a,, with same pattern
or *" matches nothing
(can still match multiple characters)

Pattern Matching

> Q: How does the longest match use p,,? Depends on what p, is...
- pgisa?
> if ?" matches a,,, then p;, ..., pm.1 Matches ay, ..., a,
> longest match is the longest match of 1 .. n-1 with 1 .. m-1

— Ppisa™

> then either a,, ..., a,., matches py, ..., pm OF a4, ..., @, Mmatches p;, ..., P

> |longest match is the longer of match of 1 .. n-1 with1..mand 1..nwith 1.. m-1
— P is aletter

> if p,, matches a,,, then
longest match is the longest match of 1 .. n-1 with 1 .. m-1

> if p,, does not match a,,, then there is no match

Pattern Matching

. Can find longest match for 1 .. n(a) and 1 .. m (p) using prefixes of each
. Need longest matchon 1, ...,i(a)and1, ..,j(p) withi<nandj<m
. Solve each of these starting with i=0
> longest match starts at i+1 if j=0
— that indicates the range i+1 .. i, which is empty
> |longest match starts at infinity if i=0 (and j > 0)
— that indicates no range

> longest match for 1..iand 1..j(i>0andj>0) starts at
min of four cases on previous slide
— (if/then’s are better written as code... still very short)
— chose infinity for no range so min will never choose it if a match exists

> Apply dynamic programming...
1
2
3

Pattern Matching

. Can find longest match for 1 .. n(a) and 1 .. m (p) using prefixes of each
. Need longest matchon 1, ...,i(a) and1, ..,j(p) withi<nandj<m

> Apply dynamic programming...
1
2
3. Solve each of these starting with i=0

> (n+1)(m+1) entries in table, and O(1) time per entry,
so total running time is O(nm)
— in practice, n >>m (say, m < 100), so this is O(n)

> Only needs O(m) memory
— only need column for i-1 to compute i, so just keep prev column
— this is why we started with i=0 rather than j=0

Regular Expression Matching
(out of scope)

> Regular expressions greatly generalize these simple patterns

> However, the matching algorithm is largely unchanged
— prefixes of the pattern are replaced with states of the NFSM

— for our simple patterns, this produces the same result because states of the
equivalent NFSM are in 1-to-1 correspondence with prefixes

— for more general patterns, that is longer the case, so it becomes necessary to
determine the NFSM states

