CSE 417 Dynamic Programming (pt 5)

 Multiple Inputs
Reminders

> HW5 due Wednesday

Dynamic Programming Review

1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you'll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order
> Key question:
4. Can you solve the problem by combining solutions from sub-problems?
> Count sub-problems to determine running time

- total is number of sub-problems times time per sub-problem

Review From Previous Lectures

> Previously:

- Find opt substructure by considering how the opt solution could use the last input.
- Given clever choice of sub-problems, find opt substructure by considering new options

> Tree Structure:

- Sub-problems are left and subtrees
- opt value = min cost of tree over choices of root:
- Problems:
> optimal binary search trees
> matrix chain multiplication
> optimal polygon triangulation (HW5)

Outline for Today

> Multiple Inputs Generally
> Longest Common Subsequence
$>$ Edit Distance
> Pattern Matching

Multiple Inputs

> Have mainly looked at problems whose input is a list of items
> Now, we will look at problems with multiple lists of inputs...
> Can still use the same heuristic to find optimal sub-substructure: consider how the optimal solution might use the last element

Multiple Inputs

> Can still use the same heuristic to find optimal sub-substructure: consider how the optimal solution might use the last element
> Difference is that there are multiple last elements

- the last one from each list
> To use the heuristic, consider how opt uses any of the last elements...
- could think about just one or all of them simultaneously
- one approach may work better than the others

Multiple Inputs: Knapsack

> We have seen a similar example already: the Knapsack problem
> Inputs are:

- list of items, 1 .. n
- price limit W not a list, but still a separate input

$\#$	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

> Solved every sub-problem of the form 1 .. j and V with $\mathrm{j} \leq \mathrm{n}$ and $\mathrm{V} \leq \mathrm{W}$

- total of $n(W+1)$ sub-problem

Outline for Today

> Multiple Inputs Generally
> Longest Common Subsequence

> Edit Distance
> Pattern Matching

Longest Common Subsequence

> Definition: A subsequence of a list a_{1}, \ldots, a_{n} is a list c_{1}, \ldots, c_{k}, where each c_{i} is from the first list and they appear in the same order.
> Note that the indices need not be contiguous:

- sub-sequences not ranges / sub-arrays
> E.g., if $A=[3,8,-5,0,23,4]$, then $B=[8,0,23]$ is a subsequence (not a subarray) $C=[3,8,5]$ is not a subsequence (no 5 in A) $D=[3,4,8]$ is not a subsequence (8 before 4 in A)

Longest Common Subsequence

> Problem: Given two lists, a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{m}, find the longest subsequences of the two lists that are identical.

- subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of $a_{1}, a_{2}, \ldots, a_{n}$ and subsequence $b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{k}}$ of $b_{1}, b_{2}, \ldots, b_{m}$ with

$$
a_{i_{1}}=b_{i_{1}}, a_{i_{2}}=b_{i_{2}}^{1}, \ldots, a_{i_{k}} \xlongequal{k} b_{i_{k}}
$$

> Example:

- $A=[1,2,1,5,4,3]$
- $B=[2,1,3,2,1,4]$
- $[1,2,1,4]$ is the longest common subsequence

Longest Common Subsequence

$>$ Brute force would take $\Omega(4 \min (n, m))$ time

- try all $\geq 2^{\min (n, m)}$ subsets of a_{1}, \ldots, a_{n} with length at most min(n, m)
- try all $\geq 2^{\min (n, m)}$ subsets of b_{1}, \ldots, b_{m} with length at most min(n, m)
- return the longest match found

Longest Common Subsequence

$>$ Brute force would take $\mathrm{O}\left(4^{\min (n, m)}\right)$ time
> Apply dynamic programming...
$>$ Q: How does the opt solution use the last elements (a_{n} and b_{m})?

- could use just a_{n}, just b_{m}, both, or neither

Longest Common Subsequence

> Apply dynamic programming...
> Q: How does the opt solution use the last elements (a_{n} and b_{m})?

- uses neither: same as opt on a_{1}, \ldots, a_{n-1} and b_{1}, \ldots, b_{m-1}
- uses only a_{n} : same as opt on a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{m-1} \qquad
- uses only b_{m} : same as opt on $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}-1}$ and $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}}$ \qquad
- uses both...
$>$ then we must have $a_{n}=b_{m}$
$>$ rest must be opt on $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}-1}$ and $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}-1}$
$>$ opt value $=1+$ opt value on a_{1}, \ldots, a_{n-1} and b_{1}, \ldots, b_{m-1}
- each common subsequence on a_{1}, \ldots, a_{n-1} and b_{1}, \ldots, b_{m-1} becomes 1 longer by adding a_{n} and b_{m}, so opt must use longest of those

Longest common subsequence

> Apply dynamic programming...

1. Can find opt value for $1, \ldots, \mathrm{n}(\mathrm{a})$ and $1, \ldots, m(b)$ using
(i) opt value for $1, \ldots, \mathrm{n}-1$ and $1, \ldots, \mathrm{~m}$
(ii) opt value for $1, \ldots, n$ and $1, \ldots, m-1$
(iii) opt value for $1, \ldots, \mathrm{n}-1$ and $1, \ldots, \mathrm{~m}-1$
2. Need opt values sub-problems on $1, \ldots, i(a)$ and $1, \ldots, j$ (b) with $i \leq n$ and $j \leq m$
$>(n+1)(m+1)$ problem to solve

- let i or j be zero (empty prefixes)

Longest common subsequence

> Apply dynamic programming...

1. Can find opt value for $1, \ldots, n(a)$ and $1, \ldots, m(b)$ using prefixes of each.
2. Need opt values sub-problems on $1, \ldots, i$ (a) and $1, \ldots, j$ (b) with $i \leq n$ and $j \leq m$
3. Solve each of these starting with $\mathrm{i}=0$ or $\mathrm{j}=0$
$>$ opt value $=0$ if $\mathrm{i}=0$ or $\mathrm{j}=0$
$>$ opt value for $1, \ldots, i$ and $1, \ldots, j=$
max(opt value for $1, \ldots, \mathrm{i}-1$ and $1, \ldots, \mathrm{j}$, opt value for $1, \ldots$, i and 1, ..., j-1,
(opt value for $1, \ldots, i-1$ and $1, \ldots, j-1)+\left(1\right.$ if $a_{i}=b_{j}$ else 0$)$)
> O(1) per table entry, so O(nm) time all together

Outline for Today

> Multiple Inputs Generally
> Longest Common Subsequence
> Edit Distance
> Pattern Matching

Edit Distance

> Problem: Given two lists, a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{m}, find the minimum cost way to transform a into b using three operations:

1. Change element v to element w at cost $\alpha_{v, w}$
2. Insert element v at cost β_{v}
3. Delete element v at cost δ_{v}

Edit Distance Example

Edit distance between these two strings (DNA):

\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{T}

$>$ Mismatch at all the blue locations
$>$ Cost of those mismatches is $a_{C, T}+a_{G, T}+a_{A, G}+2 a_{A, C}$

Edit Distance Example

Edit distance between these two strings (DNA):

-	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{T}
\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{C}	-	\mathbf{T}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{T}

> Alternatively:

- insert "C" at the beginning (top "-")
- delete " C " in the middle (across from bottom "-")
- cost is $\beta_{C}+\delta_{C}+a_{A, C}$

Edit Distance Applications

> Computational biology ("sequence alignment")

- measures similarity between DNA (or RNA or proteins)
- cost of insert / delete / change based on likelihood of mutations
> Spell checkers
- cost of insert / delete / change based on likelihood of those mistakes
> Diff tool
> Speech recognition

Edit Distance Applications

> Longest common subsequence:

- insertion and deletion cost 1, changes costs ∞
- for any common subsequence of length k, can first into second by:
$>$ deleting $\mathrm{n}-\mathrm{k}$ other elements from a
$>$ inserting m - k other elements into b
> Example:
$-A=[1,2,1,5,4,3]$
$-B=[2,1,3,2,1,4]$
- delete 5 \& 3 from A to get $[1,2,1,4]$ (common subsequence)
- insert 2 \& 3 to this to get B

Edit Distance Applications

> Longest common subsequence:

- insertion and deletion cost 1, changes costs ∞
- for any common subsequence of length k, can first into second by:
$>$ deleting $\mathrm{n}-\mathrm{k}$ other elements from a
$>$ inserting $\mathrm{m}-\mathrm{k}$ other elements into b
$>$ total cost is $\mathrm{n}+\mathrm{m}-2 \mathrm{k}$
- since $\mathrm{n}+\mathrm{m}$ is constant, minimizing $\mathrm{n}+\mathrm{m}-2 \mathrm{k}$ is maximizing over k
> Edit distance generalizes longest common subsequence
- another example of robustness to problem changes
- also suggests previous solution will work here too...

Edit Distance

> Apply dynamic programming...
> Q: How does the opt solution match the last elements (a_{n} and b_{m})?

- if $a_{n}=b_{m}: \quad$ opt value $=$ opt on a_{1}, \ldots, a_{n-1} and b_{1}, \ldots, b_{m-1}
- if change: opt value $=a_{v, w}+$ opt on a_{1}, \ldots, a_{n-1} and b_{1}, \ldots, b_{m-1}
- if insert b_{m} : opt value $=\beta_{v}+$ opt on a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{m-1}
- if delete a_{n} : opt value $=\delta_{v}+$ opt on a_{1}, \ldots, a_{n-1} and b_{1}, \ldots, b_{m}

Edit Distance

> Apply dynamic programming...

1. Can find opt value for $1, \ldots, n(a)$ and $1, \ldots, m(b)$ using prefixes of each.
2. Need opt values sub-problems on $1, \ldots, i(a)$ and $1, \ldots, j(b)$ with $i \leq n$ and $j \leq m$
3. Solve each of these starting with $\mathrm{i}=0$ or $\mathrm{j}=0$
$>$ if $i=0$, then opt value $=\beta_{b 1}+\ldots+\beta_{b j}$
$>$ if $j=0$, then opt value $=\delta_{a 1}+\ldots+\delta_{\text {ai }}$
> opt value for $1, \ldots$, i and $1, \ldots, j=$
$\max \left(a_{v, w}+\right.$ opt value for $1, \ldots, \mathrm{i}-1$ and $1, \ldots, j-1$,
$\beta_{v}+$ opt value for $1, \ldots, i$ and $1, \ldots, j-1$,
$\delta_{v}+$ opt value for $1, \ldots, i-1$ and $\left.1, \ldots, j\right)$,
where $v=a_{i}$ and $w=b_{j}$

Edit Distance

> Running time is $\mathrm{O}(\mathrm{nm})$ as before
> Very easy to implement

- about 10 lines of code (see the textbook)
> Easily implemented in Excel
- filling in a 2D table
- each value is a minimum of 4 others

Foreword: Edit Distance Memory Reqs

> In computation biology, n and m could be very large...

- with $n=m=100 k, n m=10 b$
- running time is fine since modern machines perform billions of ops per sec
- memory use of 10GB (assuming 1B per entry) is (just) possible
> With $\mathrm{n}=\mathrm{m}=1,000,000$ though:
- running time is okay: 1000B operations in minutes
- memory use of 1TB is not reasonable
> could use disk space, but time would increase by factor of $\sim 1 k$
> More on this next time...

Outline for Today

> Multiple Inputs Generally
> Longest Common Subsequence
> Edit Distance
> Pattern Matching

Pattern Matching

$>$ Problem: Given a content string a_{1}, \ldots, a_{n} and a pattern p_{1}, \ldots, p_{m}, find the longest substring of the content that matches the pattern according to the following rules:

- '?' in the pattern matches any single character of content
- '*' in the pattern matches any substring (including an empty one)
- any other letter in the pattern matches only the same letter of content

Pattern Matching Examples

$>$ Content "abcba"

- longest match is prefix "abcb"
> Content "abcba" Pattern "b?b"
- longest match is "bcb"
> Content "abcba"
$>$ Pattern "b??a"
- longest match is suffix "bcba"

Pattern Matching Applications

> Common feature of editors and IDEs
> Many also support regular expression matching

- RE matching is part of most standard libraries
- more on that later...

Pattern Matching

> Apply dynamic programming...
> Like max sub-array sum, it will be helpful to change the problem: find the longest match ending at \mathbf{a}_{n}

- apply DP to the original problem and you will find you need to solve these
- but these are also sufficient to solve the whole problem
> every match ends somewhere
$>$ longest over the longest ending at a_{1}, \ldots, a_{n} is the longest overall

Pattern Matching

> Apply dynamic programming...

- can consider how either a_{n} or p_{m} (or both) is used by the longest match
- turns out to be easiest to think about how p_{m} is used
> in practice, just try all and see what works
> Q: How does the longest match use p_{m} ?
> Depends on what p_{m} is
- p_{m} is a letter
- p_{m} is a'?'
- p_{m} is a'*'

Pattern Matching

> Q: How does the longest match use p_{m} ? Depends on what p_{m} is...

- p_{m} is a '?'
$>$ if '?' matches a_{m}, then p_{1}, \ldots, p_{m-1} matches a_{1}, \ldots, a_{n-1}
$>$ longest match is the longest match of 1 .. $n-1$ with 1 .. $m-1$

W

Pattern Matching

> Q: How does the longest match use p_{m} ? Depends on what p_{m} is...

- p_{m} is a '?'
$>$ if '?' matches a_{m}, then p_{1}, \ldots, p_{m-1} matches a_{1}, \ldots, a_{n-1}
$>$ longest match is the longest match of 1 .. $\mathrm{n}-1$ with 1 .. $m-1$
- p_{m} is a ${ }^{\prime *}$
$>$ if ' ${ }^{\prime}$ ' matches a_{m}, then a_{1}, \ldots, a_{n-1} either matches p_{1}, \ldots, p_{m-1} or p_{1}, \ldots, p_{m}

Pattern Matching

> Q: How does the longest match use p_{m} ? Depends on what p_{m} is...

- p_{m} is a '?'
$>$ if '?' matches a_{m}, then p_{1}, \ldots, p_{m-1} matches a_{1}, \ldots, a_{n-1}
$>$ longest match is the longest match of 1 .. $\mathrm{n}-1$ with 1 .. $m-1$
- p_{m} is a ${ }^{\prime *}$
$>$ if ' ${ }^{\prime}$ ' matches a_{m}, then a_{1}, \ldots, a_{n-1} either matches p_{1}, \ldots, p_{m-1} or p_{1}, \ldots, p_{m}

Pattern Matching

> Q: How does the longest match use p_{m} ? Depends on what p_{m} is...

- p_{m} is a '?'
> if '?' matches a_{m}, then p_{1}, \ldots, p_{m-1} matches a_{1}, \ldots, a_{n-1}
$>$ longest match is the longest match of 1 .. $n-1$ with 1 .. m-1
- p_{m} is a ${ }^{\prime{ }^{\prime \prime}}$
$>$ if ' '*' matches a_{m}, then a_{1}, \ldots, a_{n-1} either matches p_{1}, \ldots, p_{m-1} or p_{1}, \ldots, p_{m}
$>$ longest match is the longer of match of 1 .. $n-1$ with 1 .. $m-1$ and 1 .. $n-1$ with 1 .. m
actually, this has a problem...
it does not allow the "*' to match nothing

Pattern Matching

$>\mathbf{Q}$: How does the longest match use p_{m} ? Depends on what p_{m} is...

- p_{m} is a '?'
$>$ if '?' matches a_{m}, then p_{1}, \ldots, p_{m-1} matches a_{1}, \ldots, a_{n-1}
$>$ longest match is the longest match of 1 .. $n-1$ with 1 .. m-1
- p_{m} is a ${ }^{\prime *}$
$>$ then either a_{1}, \ldots, a_{n-1} matches p_{1}, \ldots, p_{m} or a_{1}, \ldots, a_{n} matches p_{1}, \ldots, p_{m-1}
$>$ longest match is the longer of match of 1 .. $n-1$ with 1 .. m and 1 .. n with 1 .. m-1
either match a_{n} with same pattern
or '*' matches nothing
(can still match multiple characters)

Pattern Matching

> Q: How does the longest match use p_{m} ? Depends on what p_{m} is...

- p_{m} is a '?'
$>$ if '?' matches a_{m}, then p_{1}, \ldots, p_{m-1} matches a_{1}, \ldots, a_{n-1}
$>$ longest match is the longest match of 1 .. $n-1$ with 1 .. m-1
- p_{m} is a ${ }^{\star{ }^{\prime}}$
$>$ then either a_{1}, \ldots, a_{n-1} matches p_{1}, \ldots, p_{m} or a_{1}, \ldots, a_{n} matches p_{1}, \ldots, p_{m-1}
$>$ longest match is the longer of match of 1 .. $n-1$ with 1 .. m and 1 .. n with 1 .. m-1
- p_{m} is a letter
$>$ if p_{m} matches a_{m}, then longest match is the longest match of 1 .. $\mathrm{n}-1$ with 1 .. $\mathrm{m}-1$
$>$ if p_{m} does not match a_{m}, then there is no match

Pattern Matching

> Apply dynamic programming...

1. Can find longest match for 1 .. $n(a)$ and 1 .. $m(p)$ using prefixes of each
2. Need longest match on $1, \ldots, i(a)$ and $1, \ldots, j$ (p) with $i \leq n$ and $j \leq m$
3. Solve each of these starting with $\mathrm{i}=0$
> longest match starts at $\mathrm{i}+1$ if $\mathrm{j}=0$

- that indicates the range $i+1$.. i, which is empty
> longest match starts at infinity if $\mathrm{i}=0$ (and $\mathrm{j}>0$)
- that indicates no range
> longest match for 1 .. i and $1 . . j(i>0$ and $j>0)$ starts at min of four cases on previous slide
- (if/then's are better written as code... still very short)
- chose infinity for no range so min will never choose it if a match exists

Pattern Matching

> Apply dynamic programming...

1. Can find longest match for $1 . . n(a)$ and 1 .. $m(p)$ using prefixes of each
2. Need longest match on $1, \ldots, i(a)$ and $1, \ldots, j(p)$ with $i \leq n$ and $j \leq m$
3. Solve each of these starting with $\mathrm{i}=0$
$>(n+1)(m+1)$ entries in table, and $O(1)$ time per entry, so total running time is $\mathrm{O}(\mathrm{nm})$

- in practice, $n \gg m$ (say, $m \leq 100$), so this is $O(n)$
> Only needs $\mathrm{O}(\mathrm{m})$ memory
- only need column for i-1 to compute i, so just keep prev column
- this is why we started with $\mathrm{i}=0$ rather than $\mathrm{j}=0$

Regular Expression Matching (out of scope)

> Regular expressions greatly generalize these simple patterns
> However, the matching algorithm is largely unchanged

- prefixes of the pattern are replaced with states of the NFSM
- for our simple patterns, this produces the same result because states of the equivalent NFSM are in 1-to-1 correspondence with prefixes
- for more general patterns, that is longer the case, so it becomes necessary to determine the NFSM states

