CSE 417
Dynamic Programming (pt 4)
Sub-problems on Trees
Reminders

> HW4 is due today

> HW5 will be posted shortly
Dynamic Programming Review

> Apply the steps...
 1. Describe solution in terms of solution to *any* sub-problems
 2. Determine all the sub-problems you’ll need to apply this recursively
 3. Solve every sub-problem (once only) in an appropriate order

> Key question:
 1. Can you solve the problem by combining solutions from sub-problems?

> Count sub-problems to determine running time
 – total is number of sub-problems times time per sub-problem
Review From Last Time:
More General Sub-problems

- Previously:
 - Find opt substructure by considering how the opt solution could use the last input.

- Knapsack Problem
 - sub-problems are 1 .. k and weight $V \leq W$ — more general than original problem
 - $O(nW)$ algorithm

- All-Pairs Shortest Paths (with Negative Weights)
 - application of the basic technique, but simpler code with clever sub-problems
 - sub-problems are paths with intermediate nodes from 1 .. k

- Single-Source Shortest Paths with Negative Weights
 - sub-problems are shortest paths of length at most k
Review From Last Time: More General Sub-problems

> Previously:
 - Find opt substructure by considering how the opt solution could use the last input.

> Knapsack Problem
 - sub-problems are 1 .. k and weight $V \leq W$ — more general than original problem
 - $O(nW)$ algorithm

> All-Pairs Shortest Paths (with Negative Weights)
 - application of the basic technique, but simpler code with clever sub-problems
 - sub-problems are paths with intermediate nodes from 1 .. k

> Single-Source Shortest Paths with Negative Weights
 - sub-problems are shortest paths of length at most k

(algorithms are getting slower, but in different ways...)

(re: shortest path & opt breakout trades...) have to consider $O(n)$ solutions to problem, but still get a set that must include opt

more sub-problems to solve but still fast when W is small
Outline for Today

> Optimal Binary Search Trees
> Matrix Chain Multiplication
> Optimal Polygon Triangulation
Problem: Given a set of elements $x_1, ..., x_n$ and access frequencies $f_1, ..., f_n$, find the binary search tree storing $x_1, ..., x_n$ whose total time to perform f_1 lookups of x_1, ..., f_n lookups of x_n is smallest.

The time to access a node at depth d is $O(d)$
- to simplify notation, we'll assume the hidden constant is $C = 1$

The time to perform f lookups of data at depth d is fd

Let d_i be the depth at which x_i is stored. Then the total time is $f_1d_1 + ... + f_nd_n$
Optimal Binary Search Tree Example

> Balanced binary search tree ensures \(d_i \leq \lg n \),
 so \(f_1 d_1 + \ldots + f_n d_n \leq (f_1 + \ldots + f_n) \lg n \)
> BUT that could be far from optimal

> Let the elements be a, b, c, d, e
 with access frequencies 1, 1, 1, 1, 10^{100}

> Balanced tree access time \(\approx 3 \cdot 10^{100} \)
> Any tree with e at root \(\approx 1 \cdot 10^{100} \)
Let the elements be a, b, c, d, e with access frequencies 1, 2, 3, 4, 5

The tree on the right has access time of
\[1 \cdot 4 + 2 \cdot 3 + 3 \cdot 2 + 4 \cdot 1 + 5 \cdot 2 = 30\]

Greedy would put e at the root, and get access time of
\[1 \cdot 5 + 2 \cdot 4 + 3 \cdot 3 + 4 \cdot 2 + 5 \cdot 1 = 35\]
Optimal Binary Search Tree

- Brute force: the number of possible trees is roughly 4^n...

- Apply dynamic programming...
 - write the solution in terms of solutions to sub-problems

- In this case, considering how the last element is used in the optimal solution will not lead anywhere...
 - (no obvious relationship to trees using only 1 .. n-1)
Optimal Binary Search Tree

> Apply dynamic programming...
 – write the solution in terms of solutions to sub-problems

> Still works to think about what the optimal solution looks like...
> Some element x_i must be at the root of the tree
 – then left subtree has $x_1, ..., x_{i-1}$
 – and right subtree has $x_{i+1}, ..., x_n$

> Claim: both subtrees must be themselves optimal over those subsets of the elements
Some element x_i must be at the root of the tree
 - then left subtree has $x_1, ..., x_{i-1}$ and right subtree has $x_{i+1}, ..., x_n$

Claim: both subtrees must be themselves optimal over those subsets of the elements

Let depths be $d_1, ..., d_{i-1}$ in left subtree (without root)
Total access time is $f_1 d_1 + ... + f_{i-1} d_{i-1}$
Optimal Binary Search Tree

> Claim: both subtrees must be themselves optimal over those subsets of the elements

> Let depths be d_1, \ldots, d_{i-1} in left subtree (without root)

> Total access time is $f_1 d_1 + \ldots + f_{i-1} d_{i-1}

> With root, time is $f_1 (d_1+1) + \ldots + f_{i-1} (d_{i-1}+1)$

$= f_1 d_1 + \ldots + f_{i-1} d_{i-1} + f_1 + \ldots + f_{i-1}$

opt tree must be opt on sub-problem for left subtree

constant independent of depths
Optimal Binary Search Tree

> Apply dynamic programming...
 - write the solution in terms of solutions to sub-problems

> Some element x_i must be at the root of the tree
 - the left subtree must be the opt search tree over x_1, \ldots, x_{i-1}
 - the right subtree must be the opt search tree over x_{i+1}, \ldots, x_n

> Find the correct root by trying them all
 - $\text{opt value} = \min (\text{opt value on } x_1, \ldots, x_{i-1}) + f_1 + \ldots + f_{i-1} +$
 - $(\text{opt value on } x_{i+1}, \ldots, x_n) + f_{i+1} + \ldots + f_n$
 - $+ f_i^{\text{over } i = 1 \ldots n}$
Optimal Binary Search Tree

> Apply dynamic programming...
 – write the solution in terms of solutions to sub-problems

> Some element x_i must be at the root of the tree
 – the left subtree must be the opt search tree over $x_1, ..., x_{i-1}$
 – the right subtree must be the opt search tree over $x_{i+1}, ..., x_n$

> Find the correct root by trying them all
 – let $F = f_1 + ... + f_n$
 – opt value = $\min (\text{opt value on } x_1, ..., x_{i-1}) + F$
 (opt value on $x_{i+1}, ..., x_n$) over $i = 1 .. n$
Optimal Binary Search Tree

> Apply dynamic programming...
 > write the solution in terms of solutions to sub-problems

> Some element x_i must be at the root of the tree
 > the left subtree must be the opt search tree over $x_1, ..., x_{i-1}$
 > the right subtree must be the opt search tree over $x_{i+1}, ..., x_n$

> Find the correct root by trying them all
 > let $F = f_1 + ... + f_n$
 > opt value = $F + \min (\text{opt value on } x_1, ..., x_{i-1}) +$
 > (opt value on $x_{i+1}, ..., x_n$) over $i = 1 \ldots n$
Optimal Binary Search Tree

> Apply dynamic programming...

1. Can find opt on x_1, \ldots, x_n from opt on prefixes x_1, \ldots, x_{i-1} and suffixes x_{i+1}, \ldots, x_n

2. To apply this recursively, we need opt on every range x_i, \ldots, x_j
 > (suffix for root at $x_i >$ prefix for root at $x_j >$ sub-problem on x_{i+1}, \ldots, x_{j-1})

3. Solve sub-problems starting from ranges of size 1
 > only tree on just x_i is one node x_i: opt value $= f_i$
 > for x_i, \ldots, x_j, try every root...
 opt value $= F + \min$ (opt value on x_i, \ldots, x_{k-1}) + (opt value on x_{k+1}, \ldots, x_j) over $k = i \ldots j$
Optimal Binary Search Tree

> Apply dynamic programming...

1. Can find opt on x_1, \ldots, x_n from opt on prefixes x_1, \ldots, x_{i-1} and suffixes x_{i+1}, \ldots, x_n
2. To apply this recursively, we need opt on every range x_i, \ldots, x_j
3. Solve sub-problems starting from ranges of size 1. Then use formula:
 > opt value = $F + \min (\text{opt value on } x_i, \ldots, x_{k-1}) + (\text{opt value on } x_{k+1}, \ldots, x_j)$ over $k = i \ldots j$

> $O(n^2)$ sub-problems

> Total running time is $O(n^3)$
 - probably usable for n in the thousands
Optimal Binary Search Tree

> Can be implemented in a spreadsheet as well...
 – though it would get difficult for more than n = 30 or so
 – (in example, “Freq” sheet stores sum of frequencies for each range i .. j)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>2</td>
<td>7</td>
<td>15</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>3</td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>d</td>
<td>4</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>e</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[f(x) = \text{MIN}\left(F3+B2+F4+C2+F5+D2+F6,E2\right)+\text{Freq!F2} \]
Can be implemented in a spreadsheet as well...
- though it would get difficult for more than \(n = 30 \) or so
- (in example, “Freq” sheet stores sum of frequencies for each range \(i .. j \))
Foreword

> Problems that are hard on graphs are often easy on trees...
 > tree structure works nicely within dynamic programming framework

> Will see that one way to solve the hard problems on graphs: approximate those graphs with trees
Outline for Today

> Optimal Binary Search Trees
> Matrix Chain Multiplication
> Optimal Polygon Triangulation
Matrix Chain Multiplication

> **Problem:** Given matrix dimensions $d_0 \times d_1$, $d_1 \times d_2$, ..., $d_{n-1} \times d_n$, find the order in which to multiply them all together in min time.
 - can only multiply $m_1 \times n_1$ by $m_2 \times n_2$ if $n_1 = m_2$
 > that is why the second matrix has dimensions $d_1 \times d_2$ above
 - time to multiply two such matrices is $m_1 \times n_1 \times m_2$
 - result is a matrix with dimensions $m_1 \times n_2$
 > result of multiplying $d_{i-1} \times d_i$, ..., $d_{j-1} \times d_j$ is matrix with dimensions $d_{i-1} \times d_j$

> **Example:** matrices A B C
 - can be multiplied as (A B) C or A (B C)
 - result will be the same, but time could be different
Matrix Chain Multiplication

> Example: matrices A B C

> (A B) C
 - A B in time $10 \cdot 100 \cdot 1 = 1,000$
 - (A B) C in time $10 \cdot 1 \cdot 10 = 100$
 - total time is 1,100

> A (B C)
 - B C in time $100 \cdot 1 \cdot 10 = 1,000$
 - A (B C) in time $10 \cdot 100 \cdot 10 = 10,000$
 - total time is 11,000
Matrix Chain Multiplication

> No brute force: exponentially many orderings

> Apply dynamic programming...
 – write the solution in terms of solutions to sub-problems
 – think about what the optimal solution might look like...

> Q: What is the last multiplication performed in the opt solution
> A: Must be \((A_1 \ldots A_{i-1}) (A_i \ldots A_n)\) for some \(i\)
 – matrices can only be multiplied by those next to them
 – each multiplication merges two groups together into one
 – last merges the final two groups of adjacent matrices
Matrix Chain Multiplication

> Apply dynamic programming...
 > write the solution in terms of solutions to sub-problems

> **Q:** What is the last multiplication performed in the opt solution
> **A:** Must be \((A_1 \ldots A_i) (A_{i+1} \ldots A_n)\) for some \(i\)

> Opt solution must multiply each of \(A_1 \ldots A_i\) and \(A_{i+1} \ldots A_n\) optimally
 > total time is time to multiply each group plus \(d_0 d_i d_n\)
 > any way of multiplying \(A_1 \ldots A_i\) is allowed,
 so the minimum total time is achieved by taking the best one
 > for each choice of \(i\), the term \(d_0 d_i d_n\) is a fixed constant
Matrix Chain Multiplication

> Apply dynamic programming...

1. Can find opt on A_1, \ldots, A_n from opt on prefixes A_1, \ldots, A_i and suffixes A_{i+1}, \ldots, A_n

2. To apply this recursively, we need opt on every range A_i, \ldots, A_j
 > (same as before: prefix of a suffix is an arbitrary range)

3. Solve sub-problems starting from ranges of size 1
 > multiply A_1 by itself in 0 time (already have it)
 > for A_i, \ldots, A_j, try every splitting point...
 opt value = \(\min \) (opt value on A_i, \ldots, A_k) + $d_{i-1} d_k d_j$ + (opt value on A_{k+1}, \ldots, A_j) over $k = i \ldots j-1$
Matrix Chain Multiplication

> Apply dynamic programming...

1. Can find opt on A_1, \ldots, A_n from opt on prefixes A_1, \ldots, A_i and suffixes A_{i+1}, \ldots, A_n
2. To apply this recursively, we need opt on every range A_i, \ldots, A_j
3. Solve sub-problems starting from ranges of size 1. Then use formula:
 > \[\text{opt value} = \min (\text{opt value on } A_i, \ldots, A_k) + (\text{opt value on } A_{k+1}, \ldots, A_j) + d_{i-1} d_k d_j \text{ over } k = i \ldots j-1 \]

> $O(n^2)$ sub-problems

> Total running time is $O(n^3)$
 - probably usable for n in the thousands
Matrix Chain Multiplication

> This looks very similar to previous problem...

1. Compute opt on every range $A_i, ..., A_j$
2. Solve sub-problems starting from ranges of size 1. Then use formula:

 $> \text{opt value} = \min (\text{opt value on } A_i, ..., A_k) + (\text{opt value on } A_{k+1}, ..., A_j) + d_{i-1} \cdot d_k \cdot d_j \text{ over } k = i .. j - 1$

vs

1. Compute opt on every range $x_i, ..., x_j$
2. Solve sub-problems starting from ranges of size 1, then use formula:

 $> \text{opt value} = \min (\text{opt value on } x_i, ..., x_{k-1}) + (\text{opt value on } x_{k+1}, ..., x_j) + F \text{ over } k = i .. j$

> This is not an accident...
Orderings of multiplications are trees...
- they are “parse trees” of the expression
- e.g., for (A B) C versus A (B C):

> These are essentially the same problem.
 - only notable difference is matrices only appearing in leaves
Outline for Today

- Optimal Binary Search Trees
- Matrix Chain Multiplication
- Optimal Polygon Triangulation
To **triangulate** a polygon is to add edges (chords) between vertices of the polygon so that it becomes a union of non-overlapping triangles.

- allowed to touch only on edges
Optimal Polygon Triangulation

> **Problem**: Find the triangulation of a given (convex) polygon that optimizes some quality metric over the choice of triangles.

> **Example metrics**:
 - sum of the side lengths (minimize)
 - area divided by the sum of squared side lengths (minimize)
 > prefers triangles that are "more equilateral"
Optimal Polygon Triangulation

> Applications:

- graphics
 > 3D hardware wants triangles
 > poorly shaped triangles can result in visual artifacts

- finite element analysis (engineering & physics)
 > reduce complicated shapes to simple ones: triangles
 > often want triangles that are close to equilateral
Optimal Polygon Triangulation

> Triangulations are trees!
 - label vertices 1 .. n
 - picture:
 > red is n
 > marked edge to 1
Triangulations are trees!
- leaves are edges
- root is edge (1,n)

Edge (1,n) must be part of a triangle, so 1 and n are both connected by chords to some node i
- here, i = 2
Optimal Polygon Triangulation

> Triangulations are trees!
 > leaves are edges
 > root is edge $(1,n)$

> 1 and n are both connected to some i

> $(1, i, n)$ triangle cuts polygon in 1–2 pieces
Optimal Polygon Triangulation

> Triangulations are trees!
 - leaves are edges
 - root is edge (1, n)

> 1 and n are both connected to some i

> (1, i, n) triangle cuts polygon in 1–2 pieces
 - must triangulate separately since chords cannot cross
Triangulations are trees!
 – leaves are edges
 – root is edge (1,n)

> 1 and n are both connected to some i

> (1,i,n) triangle cuts polygon in 1–2 pieces
 – must triangulate separately since chords cannot cross
Triangulations are trees!
- leaves are edges
- root is edge (1, n)

1 and n are both connected to some i

(1, i, n) triangle cuts polygon in 1–2 pieces
- must triangulate separately since chords cannot cross
Optimal Polygon Triangulation

> Triangulations are trees!
 > leaves are edges
 > root is edge (1,n)

> 1 and n are both connected to some i

> (1,i,n) triangle cuts polygon in 1–2 pieces

> 1 .. i and i .. n are triangulated separately
Optimal Polygon Triangulation

> Triangulations are trees!
 > leaves are edges
 > root is edge (1,n)

> 1 and n are both connected to some i

> 1 .. i and i .. n are triangulated separately
 > (1,i) is root of one subtree
 > (i,n) is root of the other
Triangulations are trees!
- leaves are edges
- root is edge (1,n)

1 and n are both connected to some i

1 .. i and i .. n are triangulated separately
- (1,2) is an edge => leaf
- (2,8) is a chord => subtree
Optimal Polygon Triangulation

> Triangulations are trees!
 – leaves are edges
 – root is edge (1,n)

> 1 and n are both connected to some i

> 1 .. i and i .. n are triangulated \textit{recursively}
 – (2,8) is a chord \Rightarrow subtree
 – triangulation of 2..8 with (2,8) as root
Triangulations are trees!
- leaves are edges
- root is edge (1,n)

> 1 and n are both connected to some i

> 1 .. i and i .. n are triangulated \textit{recursively}
 - (2,8) is a chord => subtree
 - (2,8) makes triangle with 6
Triangulations are trees!
 - leaves are edges
 - root is edge \((1,n)\)

- 1 and \(n\) are both connected to some \(i\)

- 1..\(i\) and \(i..n\) are triangulated *recursively*
 - \((1,i)\) is root of one subtree
 - \((i,n)\) is root of the other

Optimal Polygon Triangulation
Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)

> 1 and n are both connected to some i

> 1 .. i and i .. n are triangulated *recursively*
 - (1,i) is root of one subtree
 - (i,n) is root of the other
Optimal Polygon Triangulation

> Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)

> 1 and n are both connected to some \(i \)

> 1 .. i and i .. n are triangulated \textit{recursively}
 - (1,i) is root of one subtree
 - (i,n) is root of the other
Triangulations are trees!
- leaves are edges
- root is edge $(1,n)$

1 and n are both connected to some i

$1 .. i$ and $i .. n$ are triangulated *recursively*
- $(1,i)$ is root of one subtree
- (i,n) is root of the other
Optimal Polygon Triangulation

> Triangulations are trees!
 > leaves are edges
 > root is edge (1,n)

> 1 and n are both connected to some i

> 1 .. i and i .. n are triangulated *recursively*
 > (1,i) is root of one subtree
 > (i,n) is root of the other
Triangulations are trees!
- leaves are edges
- root is edge (1,n)

1 and n are both connected to some i

1 .. i and i .. n are triangulated *recursively*
- (1,i) is root of one subtree
- (i,n) is root of the other
Optimal Polygon Triangulation

- Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)

- 1 and n are both connected to some i

- 1..i and i..n are triangulated recursively
 - (1,i) is root of one subtree
 - (i,n) is root of the other
Triangulations are trees!
- leaves are edges
- root is edge (1,n)

1 and n are both connected to some i

1 .. i and i .. n are triangulated *recursively*
- (1,i) is root of one subtree
- (i,n) is root of the other
Optimal Polygon Triangulation

- Triangulations are trees!
 - leaves are edges
 - root is edge \((1,n)\)

- 1 and \(n\) are both connected to some \(i\)

- 1 .. \(i\) and \(i..n\) are triangulated *recursively*
 - \((1,i)\) is root of one subtree
 - \((i,n)\) is root of the other
Optimal Polygon Triangulation

> Triangulations are trees!
 – leaves are edges
 – root is edge (1,n)

> 1 and n are both connected to some i

> 1 .. i and i .. n are triangulated *recursively*
 – (1,i) is root of one subtree
 – (i,n) is root of the other
Optimal Polygon Triangulation

> Any triangulation is a tree.

> Likewise, any tree with edges as leaves is a triangulation.
 - (not hard to check)

> Hence, this is essentially the same problem as the other two, so the same algorithm should work...
Optimal Polygon Triangulation

> Apply dynamic programming...

1. Can find opt triangulation of 1 .. n given opt for each 1 .. i and i .. n (see below)
2. To apply this recursively, we need opt on every range i .. j
3. Solve sub-problems starting from ranges of size 3:
 > opt value on i i+1 i+2 = value for that triangle (there's only one triangulation)
 > opt value on i .. j = \text{min} (opt value on i .. k) + (opt value on k .. j) + value of triangle (i, k, j)
 \text{over} k = i+1 .. j-1

> Can replace “+” with any associative op
> Can replace “min” with “max”
> Value on individual triangles is arbitrary

actually generalizes the other two problems
Optimal Polygon Triangulation

> Apply dynamic programming...

1. Can find opt triangulation of 1 .. n given opt for each 1 .. i and i .. n (see below)
2. To apply this recursively, we need opt on every range i .. j
3. Solve sub-problems starting from ranges of size 3:
 > opt value on i i+1 i+2 = value for that triangle (there’s only one triangulation)
 > opt value on i .. j =
 \[\min_{k = i+1}^{j-1} (\text{opt value on } i .. k) + (\text{opt value on } k .. j) + \text{value of triangle } (i, k, j) \]

> Total running time is O(n^3) as before
Optimal Polygon Triangulation

> You will solve this problem (on paper) in HW5
 - (actually, you can use Excel / Google Docs)