CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees

UNIVERSITY of WASHINGTON

Reminders

- > HW4 is due today
- > HW5 will be posted shortly

Dynamic Programming Review

- > Apply the steps...
 - 1. Describe solution in terms of solution to *any* sub-problems
 - 2. Determine all the sub-problems you'll need to apply this recursively
 - 3. Solve every sub-problem (once only) in an appropriate order
- > Key question:
 - 1. Can you solve the problem by combining solutions from sub-problems?
- > Count sub-problems to determine running time
 - total is number of sub-problems times time per sub-problem

Review From Last Time: More General Sub-problems

even if we have to <u>guess</u> sub-problems (non-obvious cases), can still think about what new solutions are allowed in larger sub-problems vs smaller ones to find opt substructure

Previously: larger sub-problems vs smaller ones to find opt substructure
 Find opt substructure by considering how the opt solution could use the last input.

> Knapsack Problem

- sub-problems are 1 ... k and weight $V \le W$ more general than original problem
- O(nW) algorithm

> All-Pairs Shortest Paths (with Negative Weights)

- application of the basic technique, but simpler code with clever sub-problems
- sub-problems are paths with intermediate nodes from 1 .. k

> Single-Source Shortest Paths with Negative Weights

sub-problems are shortest paths of length at most k

Review From Last Time: More General Sub-problems

algorithms are getting slower, but in different ways...

more sub-problems to solve but still fast when W is small (re: shortest path & opt breakout trades...) have to consider O(n) solutions to problem, but still get a set that <u>must</u> include opt

– Find opt substructure by considering how the opt solution could use the last input.

> Knapsack Problem

> **Previously:**

- sub-problems are 1 ... k and weight $V \le W$ more general than original problem
- O(nW) algorithm

> All-Pairs Shortest Paths (with Negative Weights)

- application of the basic technique, but simpler code with clever sub-problems
- sub-problems are paths with intermediate nodes from 1 .. k

> Single-Source Shortest Paths with Negative Weights

sub-problems are shortest paths of length at most k

Outline for Today

> Optimal Binary Search Trees 🤇 🧲 💳

- > Matrix Chain Multiplication
- > **Optimal Polygon Triangulation**

- > **Problem**: Given a set of elements $x_1, ..., x_n$ and access frequencies $f_1, ..., f_n$, find the binary search tree storing $x_1, ..., x_n$ whose total time to perform f_1 lookups of $x_1, ..., f_n$ lookups of x_n is smallest.
- > The time to access a node at depth d is O(d)
 - to simplify notation, we'll assume the hidden constant is C = 1
- > The time to perform f lookups of data at depth d is fd
- > Let d_i be the depth at which x_i is stored. Then the total time is $f_1d_1 + ... + f_nd_n$

Optimal Binary Search Tree Example

- > Balanced binary search tree ensures $d_i \le \lg n$, so $f_1d_1 + ... + f_nd_n \le (f_1 + ... + f_n) \lg n$
- > BUT that could be far from optimal
- > Let the elements be a, b, c, d, e with access frequencies 1, 1, 1, 1, 10¹⁰⁰
- > Balanced tree access time $\approx 3.10^{100}$
- > Any tree with e at root $\approx 1.10^{100}$

Optimal Binary Search Tree Example 2

- > Let the elements be a, b, c, d, e with access frequencies 1, 2, 3, 4, 5
- > The tree on the right has access time of $1\cdot 4 + 2\cdot 3 + 3\cdot 2 + 4\cdot 1 + 5\cdot 2 = 30$
- > Greedy would put e at the root, and get access time of 1.5 + 2.4 + 3.3 + 4.2 + 5.1 = 35

- > Brute force: the number of possible trees is roughly 4ⁿ...
- > Apply dynamic programming...
 - write the solution in terms of solutions to sub-problems
- > In this case, considering how the *last element* is used in the optimal solution will not lead anywhere...
 - (no obvious relationship to trees using only 1 .. n-1)

W

- > Apply dynamic programming...
 - write the solution in terms of solutions to sub-problems
- > Still works to think about what the optimal solution looks like...
- > Some element x_i must be at the root of the tree
 - then left subtree has $x_1, ..., x_{i-1}$
 - and right subtree has x_{i+1} , ..., x_n
- > Claim: both subtrees must be themselves optimal over those subsets of the elements

- > Some element x_i must be at the root of the tree
 - then left subtree has $x_1, ..., x_{i-1}$ and right subtree has $x_{i+1}, ..., x_n$
- > Claim: both subtrees must be themselves optimal over those subsets of the elements
- > Let depths be $d_1, ..., d_{i-1}$ in left subtree (without root)
- > Total access time is $f_1d_1 + ... + f_{i-1}d_{i-1}$

- > Claim: both subtrees must be themselves optimal over those subsets of the elements
- > Let depths be $d_1, ..., d_{i-1}$ in left subtree (without root)
- > Total access time is $f_1d_1 + ... + f_{i-1}d_{i-1}$

opt tree must be opt on sub-problem for left subtree

> With root, time is $f_1(d_1+1) + ... + f_{i-1}(d_{i-1}+1)$ = $f_1d_1 + ... + f_{i-1}d_{i-1} + f_1 + ... + f_{i-1}$

> constant independent of depths

- > Apply dynamic programming...
 - write the solution in terms of solutions to sub-problems
- > Some element x_i must be at the root of the tree
 - the left subtree must be the opt search tree over $x_1, ..., x_{i-1}$
 - the right subtree must be the opt search tree over x_{i+1} , ..., x_n
- > Find the correct root by trying them all
 - opt value = **min** (opt value on $x_1, ..., x_{i-1}$) + f_1 + ... + f_{i-1} + (opt value on $x_{i+1}, ..., x_n$) + f_{i+1} + ... + f_n + f_i **over** i = 1 ... n

- > Apply dynamic programming...
 - write the solution in terms of solutions to sub-problems
- > Some element x_i must be at the root of the tree
 - the left subtree must be the opt search tree over $x_1, ..., x_{i-1}$
 - the right subtree must be the opt search tree over x_{i+1} , ..., x_n
- > Find the correct root by trying them all
 - let $F = f_1 + ... + f_n$
 - opt value = **min** (opt value on $x_1, ..., x_{i-1}$) + F

(opt value on x_{i+1} , ..., x_n)

over i = 1 .. n

- > Apply dynamic programming...
 - write the solution in terms of solutions to sub-problems
- > Some element x_i must be at the root of the tree
 - the left subtree must be the opt search tree over $x_1, ..., x_{i-1}$
 - the right subtree must be the opt search tree over x_{i+1} , ..., x_n
- > Find the correct root by trying them all
 - let $F = f_1 + ... + f_n$
 - opt value = F + **min** (opt value on $x_1, ..., x_{i-1}$) + (opt value on $x_{i+1}, ..., x_n$) **over** i = 1 ... n

> Apply dynamic programming...

- 1. Can find opt on x₁, ..., x_n from opt on prefixes x₁, ..., x_{i-1} and suffixes x_{i+1}, ..., x_n
- 2. To apply this recursively, we need opt on every range x_i, ..., x_j
 > (suffix for root at x_i > prefix for root at x_j > sub-problem on x_{i+1}, ..., x_{j-1})
 - > (sum for root at $x_i > prenx for root at <math>x_j > sub-problem on x_{i+1}, ...,$
- 3. Solve sub-problems starting from ranges of size 1
 - > only tree on just x_i is one node x_i : opt value = f_i

> Apply dynamic programming...

- 1. Can find opt on x_1 , ..., x_n from opt on prefixes x_1 , ..., x_{i-1} and suffixes x_{i+1} , ..., x_n
- 2. To apply this recursively, we need opt on every range x_i , ..., x_j
- 3. Solve sub-problems starting from ranges of size 1. Then use formula:
 - > opt value = F + **min** (opt value on x_i , ..., x_{k-1}) + (opt value on x_{k+1} , ..., x_j) **over** k = i ... j
- > O(n²) sub-problems
- > Total running time is O(n³)
 - probably usable for n in the thousands

> Can be implemented in a spreadsheet as well...

- though it would get difficult for more than n = 30 or so
- (in example, "Freq" sheet stores sum of frequencies for each range i .. j)

	А	В	С	D	Е	F
1		а	b	С	d	е
2	а	1	4	10	18	30
3	b		2	7	15	26
4	С			3	10	20
5	d				4	13
6	е					5

 f_x =MIN(F3,B2+F4,C2+F5,D2+F6,E2)+Freq!F2

W

> Can be implemented in a spreadsheet as well...

- though it would get difficult for more than n = 30 or so
- (in example, "Freq" sheet stores sum of frequencies for each range i .. j)

	Α	В	С	D	E	F
1		а	b	С	d	е
2	а	1	4	10	18	F2
3	b		2	7	15	26
4	С			3	10	20
5	d				4	13
6	е					5

 f_x =MIN(F3,B2+F4,C2+F5,D2+F6,E2)+Freq!F2

W

Foreword

- > Problems that are hard on graphs are often easy on trees...
 - tree structure works nicely within dynamic programming framework
- > Will see that one way to solve the hard problems on graphs: approximate those graphs with trees

Outline for Today

> Optimal Binary Search Trees

> Matrix Chain Multiplication

- > **Problem**: Given matrix dimensions $d_0 \times d_1$, $d_1 \times d_2$, ..., $d_{n-1} \times d_n$, find the order in which to multiply them all together in min time.
 - can only multiply m₁ x n₁ by m₂ x n₂ if n₁ = m₂
 > that is why the second matrix has dimensions d₁ x d₂ above
 - time to multiply two such matrices is $m_1 n_1 m_2$
 - result is a matrix with dimensions $m_1 \times n_2$
 - > result of multiplying $d_{i-1} \times d_i$, ..., $d_{j-1} \times d_j$ is matrix with dimensions $d_{i-1} \times d_j$
- > Example: matrices A B C
 - can be multiplied as (A B) C or A (B C)
 - result will be the same, but time could be different

- > Example: matrices A B C
- > (A B) C
 - A B in time $10 \cdot 100 \cdot 1 = 1,000$
 - (A B) C in time $10 \cdot 1 \cdot 10 = 100$
 - total time is 1,100

> A (B C)

- B C in time $100 \cdot 1 \cdot 10 = 1,000$
- A (B C) in time 10 \cdot 100 \cdot 10 = 10,000
- total time is 11,000

	rows	cols
Α	10	100
В	100	1
С	1	10

- > No brute force: exponentially many orderings
- > Apply dynamic programming...
 - write the solution in terms of solutions to sub-problems
 - think about what the optimal solution might look like...
- > **Q**: What is the last multiplication performed in the opt solution
- > **A**: Must be $(A_1 ... A_{i-1}) (A_i ... A_n)$ for some i
 - matrices can only be multiplied by those next to them
 - each multiplication merges two groups together into one
 - last merges the final two groups of adjacent matrices

- > Apply dynamic programming...
 - write the solution in terms of solutions to sub-problems
- > **Q**: What is the last multiplication performed in the opt solution
- > A: Must be (A₁ ... A_i) (A_{i+1} ... A_n) for some i

min over each choice of i

- > Opt solution must multiply each of $A_1 \dots A_i$ and $A_{i+1} \dots A_n$ optimally
 - total time is time to multiply each group plus $d_0 d_i d_n$
 - any way of multiplying A₁ ... A_i is allowed,
 so the minimum total time is achieved by taking the best one
 - > for each choice of i, the term $d_0 d_i d_n$ is a fixed constant

> Apply dynamic programming...

- 1. Can find opt on A₁, ..., A_n from opt on prefixes A₁, ..., A_i and suffixes A_{i+1}, ..., A_n
- 2. To apply this recursively, we need opt on every range A_i , ..., A_i
 - > (same as before: prefix of a suffix is an arbitrary range)
- 3. Solve sub-problems starting from ranges of size 1
 - > multiply A_1 by itself in 0 time (already have it)
 - > for A_i, ..., A_j, try every splitting point... opt value = **min** (opt value on A_i , ..., A_k) + $d_{i-1} d_k d_j$ + (opt value on A_{k+1} , ..., A_j) **over** k = i ... j-1

> Apply dynamic programming...

- 1. Can find opt on A_1 , ..., A_n from opt on prefixes A_1 , ..., A_i and suffixes A_{i+1} , ..., A_n
- 2. To apply this recursively, we need opt on every range A_i , ..., A_j
- 3. Solve sub-problems starting from ranges of size 1. Then use formula:
 - > opt value = **min** (opt value on A_i , ..., A_k) + (opt value on A_{k+1} , ..., A_j) + $d_{i-1} d_k d_j$ **over** k = i ... j-1
- > O(n²) sub-problems
- > Total running time is O(n³)
 - probably usable for n in the thousands

> This looks very similar to previous problem...

- 1. Compute opt on every range A_i, ..., A_i
- 2. Solve sub-problems starting from ranges of size 1. Then use formula:
 - > opt value = **min** (opt value on A_i , ..., A_k) + (opt value on A_{k+1} , ..., A_j) + $d_{i-1} d_k d_j$ **over** k = i ... j-1

VS

- 1. Compute opt on every range x_i , ..., x_j
- 2. Solve sub-problems starting from ranges of size 1, then use formula: > opt value = **min** (opt value on $x_i, ..., x_{k-1}$) + (opt value on $x_{k+1}, ..., x_j$) + F **over** k = i...j
- > This is not an accident...

> Orderings of multiplications are trees...

- they are "parse trees" of the expression
- e.g., for (A B) C versus A (B C):

> These are *essentially* the same problem.

- only notable difference is matrices only appearing in leaves

В

Outline for Today

- > Optimal Binary Search Trees
- > Matrix Chain Multiplication
- > Optimal Polygon Triangulation

- > To triangulate a polygon is to add edges (chords) between vertices of the polygon so that it becomes a union of non-overlapping triangles.
 - allowed to touch only on edges

- > Problem: Find the triangulation of a given (convex) polygon that optimizes some quality metric over the choice of triangles.
- > Example metrics:
 - sum of the side lengths (minimize)
 - area divided by the sum of squared side lengths (minimize)
 - > prefers triangles that are "more equilateral"

> Applications:

- graphics
 - > 3D hardware wants triangles
 - > poorly shaped triangles can result in visual artifacts
- finite element analysis (engineering & physics)
 - > reduce complicated shapes to simple ones: triangles
 - > often want triangles that are close to equilateral

W

- > Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)
- > 1 and n are both connected to some i
- > 1 .. i and i .. n are triangulated *recursively*
 - (2,8) is a chord => subtree
 - (2,8) makes triangle with 6

- > Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)
- > 1 and n are both connected to some i
- > 1 .. i and i .. n are triangulated *recursively*
 - (1,i) is root of one subtree
 - (i,n) is root of the other

> Triangulations are trees!

leaves are edges
root is edge (1,n)

> 1 and n are both connected to some i
> 1 .. i and i .. n are triangulated *recursively*(1,i) is root of one subtree
(i,n) is root of the other

2

5

> Triangulations are trees!

leaves are edges
root is edge (1,n)

> 1 and n are both connected to some i
> 1 ... i and i ... n are triangulated *recursively*(1,i) is root of one subtree
(i,n) is root of the other

5

- > Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)
- > 1 and n are both connected to some i
- > 1 .. i and i .. n are triangulated *recursively*
 - (1,i) is root of one subtree
 - (i,n) is root of the other

- > Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)
- > 1 and n are both connected to some i
- > 1 .. i and i .. n are triangulated *recursively*
 - (1,i) is root of one subtree
 - (i,n) is root of the other

- > Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)
- > 1 and n are both connected to some i
- > 1 .. i and i .. n are triangulated *recursively*
 - (1,i) is root of one subtree
 - (i,n) is root of the other

- > Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)
- > 1 and n are both connected to some i
- > 1 .. i and i .. n are triangulated *recursively*
 - (1,i) is root of one subtree
 - (i,n) is root of the other

- > Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)
- > 1 and n are both connected to some i
- > 1 .. i and i .. n are triangulated *recursively*
 - (1,i) is root of one subtree
 - (i,n) is root of the other

- > Triangulations are trees!
 - leaves are edges
 - root is edge (1,n)
- > 1 and n are both connected to some i
- > 1 .. i and i .. n are triangulated *recursively*
 - (1,i) is root of one subtree
 - (i,n) is root of the other

- > Any triangulation is a tree.
- Likewise, any tree with edges as leaves is a triangulation.
 (not hard to check)
- > Hence, this is essentially the same problem as the other two, so the same algorithm should work...

> Apply dynamic programming...

- 1. Can find opt triangulation of 1 .. n given opt for each 1 .. i and i .. n (see below)
- 2. To apply this recursively, we need opt on every range i .. j
- 3. Solve sub-problems starting from ranges of size 3:
 - > opt value on i i+1 i+2 = value for that triangle (there's only one triangulation)
 - > opt value on i .. j = min (opt value on i .. k) + (opt value on k .. j) + value of triangle (i, k, j) over k = i+1 .. j-1
- > Can replace "+" with any associative op
- > Can replace "min" with "max"
- > Value on individual triangles is arbitrary

actually generalizes the other two problems

> Apply dynamic programming...

- 1. Can find opt triangulation of 1 .. n given opt for each 1 .. i and i .. n (see below)
- 2. To apply this recursively, we need opt on every range i .. j
- 3. Solve sub-problems starting from ranges of size 3:
 - > opt value on i i+1 i+2 = value for that triangle (there's only one triangulation)
 - > opt value on i .. j = min (opt value on i .. k) + (opt value on k .. j) + value of triangle (i, k, j) over k = i+1 .. j-1
- > Total running time is O(n³) as before

> You will solve this problem (on paper) in HW5

(actually, you can use Excel / Google Docs)

