
CSE 417
Dynamic Programming (pt 4)
Sub-problems on Trees

> HW4 is due today

> HW5 will be posted shortly

Reminders

> Apply the steps...
1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you’ll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order

> Key question:
1. Can you solve the problem by combining solutions from sub-problems?

> Count sub-problems to determine running time
– total is number of sub-problems times time per sub-problem

Dynamic Programming Review

> Previously:
– Find opt substructure by considering how the opt solution could use the last input.

> Knapsack Problem
– sub-problems are 1 .. k and weight V ≤ W — more general than original problem
– O(nW) algorithm

> All-Pairs Shortest Paths (with Negative Weights)
– application of the basic technique, but simpler code with clever sub-problems
– sub-problems are paths with intermediate nodes from 1 .. k

> Single-Source Shortest Paths with Negative Weights
– sub-problems are shortest paths of length at most k

Review From Last Time:
More General Sub-problems

even if we have to guess sub-problems (non-obvious cases),
can still think about what new solutions are allowed in
larger sub-problems vs smaller ones to find opt substructure

> Previously:
– Find opt substructure by considering how the opt solution could use the last input.

> Knapsack Problem
– sub-problems are 1 .. k and weight V ≤ W — more general than original problem
– O(nW) algorithm

> All-Pairs Shortest Paths (with Negative Weights)
– application of the basic technique, but simpler code with clever sub-problems
– sub-problems are paths with intermediate nodes from 1 .. k

> Single-Source Shortest Paths with Negative Weights
– sub-problems are shortest paths of length at most k

Review From Last Time:
More General Sub-problems

(re: shortest path & opt breakout trades...)
have to consider O(n) solutions to problem,
but still get a set that must include opt

more sub-problems to solve
but still fast when W is small

algorithms are getting slower,
but in different ways...

> Optimal Binary Search Trees
> Matrix Chain Multiplication
> Optimal Polygon Triangulation

Outline for Today

> Problem: Given a set of elements x1, ..., xn and access frequencies
f1, ..., fn, find the binary search tree storing x1, ..., xn whose total
time to perform f1 lookups of x1,, fn lookups of xn is smallest.

> The time to access a node at depth d is O(d)
– to simplify notation, we’ll assume the hidden constant is C = 1

> The time to perform f lookups of data at depth d is fd

> Let di be the depth at which xi is stored.
Then the total time is f1d1 + ... + fndn

Optimal Binary Search Tree

> Balanced binary search tree ensures di ≤ lg n,
so f1d1 + ... + fndn ≤ (f1 + ... + fn) lg n

> BUT that could be far from optimal

> Let the elements be a, b, c, d, e
with access frequencies 1, 1, 1, 1, 10100

> Balanced tree access time ≈ 3·10100

> Any tree with e at root ≈ 1·10100

Optimal Binary Search Tree Example

c

b

a e

d

> Let the elements be a, b, c, d, e
with access frequencies 1, 2, 3, 4, 5

> The tree on the right has access time of
1·4 + 2·3 + 3·2 + 4·1 + 5·2 = 30

> Greedy would put e at the root,
and get access time of

1·5 + 2·4 + 3·3 + 4·2 + 5·1 = 35

Optimal Binary Search Tree Example 2

c

b

a

e

d

> Brute force: the number of possible trees is roughly 4n...

> Apply dynamic programming...
– write the solution in terms of solutions to sub-problems

> In this case, considering how the last element is used in the
optimal solution will not lead anywhere...
– (no obvious relationship to trees using only 1 .. n-1)

Optimal Binary Search Tree

> Apply dynamic programming...
– write the solution in terms of solutions to sub-problems

> Still works to think about what the optimal solution looks like...
> Some element xi must be at the root of the tree

– then left subtree has x1, ..., xi-1

– and right subtree has xi+1, ..., xn

> Claim: both subtrees must be themselves optimal
over those subsets of the elements

Optimal Binary Search Tree

> Some element xi must be at the root of the tree
– then left subtree has x1, ..., xi-1 and right subtree has xi+1, ..., xn

> Claim: both subtrees must be themselves optimal
over those subsets of the elements

> Let depths be d1, ..., di-1 in left subtree (without root)
> Total access time is f1d1 + ... + fi-1di-1

Optimal Binary Search Tree

> Claim: both subtrees must be themselves optimal
over those subsets of the elements

> Let depths be d1, ..., di-1 in left subtree (without root)
> Total access time is f1d1 + ... + fi-1di-1

> With root, time is f1(d1+1) + ... + fi-1(di-1+1)
= f1d1 + ... + fi-1di-1 + f1 + ... + fi-1

Optimal Binary Search Tree

constant
independent of depths

opt tree must be opt on
sub-problem for left subtree

> Apply dynamic programming...
– write the solution in terms of solutions to sub-problems

> Some element xi must be at the root of the tree
– the left subtree must be the opt search tree over x1, ..., xi-1

– the right subtree must be the opt search tree over xi+1, ..., xn

> Find the correct root by trying them all
– opt value = min (opt value on x1, ..., xi-1) + f1 + ... + fi-1 +

(opt value on xi+1, ..., xn) + fi+1 + ... + fn
+ fi over i = 1 .. n

Optimal Binary Search Tree

> Apply dynamic programming...
– write the solution in terms of solutions to sub-problems

> Some element xi must be at the root of the tree
– the left subtree must be the opt search tree over x1, ..., xi-1

– the right subtree must be the opt search tree over xi+1, ..., xn

> Find the correct root by trying them all
– let F = f1 + ... + fn

– opt value = min (opt value on x1, ..., xi-1) + F
(opt value on xi+1, ..., xn) over i = 1 .. n

Optimal Binary Search Tree

> Apply dynamic programming...
– write the solution in terms of solutions to sub-problems

> Some element xi must be at the root of the tree
– the left subtree must be the opt search tree over x1, ..., xi-1

– the right subtree must be the opt search tree over xi+1, ..., xn

> Find the correct root by trying them all
– let F = f1 + ... + fn

– opt value = F + min (opt value on x1, ..., xi-1) +
(opt value on xi+1, ..., xn) over i = 1 .. n

Optimal Binary Search Tree

> Apply dynamic programming...

1. Can find opt on x1, ..., xn from opt on prefixes x1, .., xi-1 and suffixes xi+1, ..., xn

2. To apply this recursively, we need opt on every range xi, ..., xj
> (suffix for root at xi＞ prefix for root at xj＞ sub-problem on xi+1, ..., xj-1)

3. Solve sub-problems starting from ranges of size 1
> only tree on just xi is one node xi: opt value = fi

> for xi, ..., xj, try every root...
opt value = F + min (opt value on xi, ..., xk-1) +

(opt value on xk+1, ..., xj) over k = i .. j

Optimal Binary Search Tree

> Apply dynamic programming...

1. Can find opt on x1, ..., xn from opt on prefixes x1, .., xi-1 and suffixes xi+1, ..., xn

2. To apply this recursively, we need opt on every range xi, ..., xj

3. Solve sub-problems starting from ranges of size 1. Then use formula:
> opt value = F + min (opt value on xi, ..., xk-1) + (opt value on xk+1, ..., xj) over k = i .. j

> O(n2) sub-problems

> Total running time is O(n3)
– probably usable for n in the thousands

Optimal Binary Search Tree

> Can be implemented in a spreadsheet as well...
– though it would get difficult for more than n = 30 or so
– (in example, “Freq” sheet stores sum of frequencies for each range i .. j)

Optimal Binary Search Tree

> Can be implemented in a spreadsheet as well...
– though it would get difficult for more than n = 30 or so
– (in example, “Freq” sheet stores sum of frequencies for each range i .. j)

Optimal Binary Search Tree

> Problems that are hard on graphs are often easy on trees...
– tree structure works nicely within dynamic programming framework

> Will see that one way to solve the hard problems on graphs:
approximate those graphs with trees

Foreword

> Optimal Binary Search Trees
> Matrix Chain Multiplication
> Optimal Polygon Triangulation

Outline for Today

> Problem: Given matrix dimensions d0 x d1, d1 x d2, ..., dn-1 x dn,
find the order in which to multiply them all together in min time.
– can only multiply m1 x n1 by m2 x n2 if n1 = m2

> that is why the second matrix has dimensions d1 x d2 above
– time to multiply two such matrices is m1 n1 m2

– result is a matrix with dimensions m1 x n2
> result of multiplying di-1 x di, ..., dj-1 x dj is matrix with dimensions di-1 x dj

> Example: matrices A B C
– can be multiplied as (A B) C or A (B C)
– result will be the same, but time could be different

Matrix Chain Multiplication

> Example: matrices A B C

> (A B) C
– A B in time 10 · 100 · 1 = 1,000
– (A B) C in time 10 · 1 · 10 = 100
– total time is 1,100

> A (B C)
– B C in time 100 · 1 · 10 = 1,000
– A (B C) in time 10 · 100 · 10 = 10,000
– total time is 11,000

Matrix Chain Multiplication

rows cols
A 10 100
B 100 1
C 1 10

> No brute force: exponentially many orderings

> Apply dynamic programming...
– write the solution in terms of solutions to sub-problems
– think about what the optimal solution might look like...

> Q: What is the last multiplication performed in the opt solution
> A: Must be (A1 ... Ai-1) (Ai ... An) for some i

– matrices can only be multiplied by those next to them
– each multiplication merges two groups together into one
– last merges the final two groups of adjacent matrices

Matrix Chain Multiplication

> Apply dynamic programming...
– write the solution in terms of solutions to sub-problems

> Q: What is the last multiplication performed in the opt solution
> A: Must be (A1 ... Ai) (Ai+1 ... An) for some i

> Opt solution must multiply each of A1 ... Ai and Ai+1 ... An optimally
– total time is time to multiply each group plus d0 di dn

– any way of multiplying A1 ... Ai is allowed,
so the minimum total time is achieved by taking the best one
> for each choice of i, the term d0 di dn is a fixed constant

Matrix Chain Multiplication

min over each choice of i

> Apply dynamic programming...

1. Can find opt on A1, ..., An from opt on prefixes A1, .., Ai and suffixes Ai+1, ..., An

2. To apply this recursively, we need opt on every range Ai, ..., Aj
> (same as before: prefix of a suffix is an arbitrary range)

3. Solve sub-problems starting from ranges of size 1
> multiply A1 by itself in 0 time (already have it)
> for Ai, ..., Aj, try every splitting point...

opt value = min (opt value on Ai, ..., Ak) + di-1 dk dj +
(opt value on Ak+1, ..., Aj) over k = i .. j-1

Matrix Chain Multiplication

> Apply dynamic programming...

1. Can find opt on A1, ..., An from opt on prefixes A1, .., Ai and suffixes Ai+1, ..., An

2. To apply this recursively, we need opt on every range Ai, ..., Aj

3. Solve sub-problems starting from ranges of size 1. Then use formula:
> opt value = min (opt value on Ai, ..., Ak) + (opt value on Ak+1, ..., Aj) + di-1 dk dj over k = i .. j-1

> O(n2) sub-problems

> Total running time is O(n3)
– probably usable for n in the thousands

Matrix Chain Multiplication

> This looks very similar to previous problem...

1. Compute opt on every range Ai, ..., Aj

2. Solve sub-problems starting from ranges of size 1. Then use formula:
> opt value = min (opt value on Ai, ..., Ak) + (opt value on Ak+1, ..., Aj) + di-1 dk dj over k = i .. j-1

vs

1. Compute opt on every range xi, ..., xj

2. Solve sub-problems starting from ranges of size 1, then use formula:
> opt value = min (opt value on xi, ..., xk-1) + (opt value on xk+1, ..., xj) + F over k = i .. j

> This is not an accident...

Matrix Chain Multiplication

> Orderings of multiplications are trees...
– they are “parse trees” of the expression
– e.g., for (A B) C versus A (B C):

> These are essentially the same problem.
– only notable difference is matrices only appearing in leaves

Matrix Chain Multiplication

A B

C

A

B C

> Optimal Binary Search Trees
> Matrix Chain Multiplication
> Optimal Polygon Triangulation

Outline for Today

> To triangulate a polygon is to add edges
(chords) between vertices of the polygon
so that it becomes a union of
non-overlapping
triangles.
– allowed to

touch only
on edges

Optimal Polygon Triangulation

> Problem: Find the triangulation of a given
(convex) polygon that optimizes some
quality metric over the choice of triangles.

> Example metrics:
– sum of the side lengths (minimize)
– area divided by the sum of squared side lengths (minimize)

> prefers triangles that are ”more equilateral”

Optimal Polygon Triangulation

> Applications:

– graphics
> 3D hardware wants triangles
> poorly shaped triangles can result in visual artifacts

– finite element analysis (engineering & physics)
> reduce complicated shapes to simple ones: triangles
> often want triangles that are close to equilateral

Optimal Polygon Triangulation

> Triangulations are trees!
– label vertices 1 .. n
– picture:

> red is n
> marked edge to 1

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> Edge (1,n) must be
part of a triangle, so
1 and n are both
connected by chords
to some node i
– here, i = 2

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> (1,i,n) triangle cuts
polygon in 1–2 pieces

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> (1,i,n) triangle cuts
polygon in 1–2 pieces
– must triangulate

separately since chords cannot cross

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> (1,i,n) triangle cuts
polygon in 1–2 pieces
– must triangulate

separately since chords cannot cross

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> (1,i,n) triangle cuts
polygon in 1–2 pieces
– must triangulate

separately since chords cannot cross

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> (1,i,n) triangle cuts
polygon in 1–2 pieces

> 1 .. i and i .. n are
triangulated separately

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated separately
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated separately
– (1,2) is an edge => leaf
– (2,8) is a chord => subtree

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (2,8) is a chord => subtree
– triangulation of 2..8 with (2,8) as root

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (2,8) is a chord => subtree
– (2,8) makes triangle with 6

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Triangulations are trees!
– leaves are edges
– root is edge (1,n)

> 1 and n are both
connected to some i

> 1 .. i and i .. n are
triangulated recursively
– (1,i) is root of one subtree
– (i,n) is root of the other

Optimal Polygon Triangulation

1

2

3

4

56

7

8

> Any triangulation is a tree.

> Likewise, any tree with edges as leaves is a triangulation.
– (not hard to check)

> Hence, this is essentially the same problem as the other two,
so the same algorithm should work...

Optimal Polygon Triangulation

> Apply dynamic programming...

1. Can find opt triangulation of 1 .. n given opt for each 1 .. i and i .. n (see below)
2. To apply this recursively, we need opt on every range i .. j
3. Solve sub-problems starting from ranges of size 3:

> opt value on i i+1 i+2 = value for that triangle (there’s only one triangulation)
> opt value on i .. j =

min (opt value on i .. k) + (opt value on k .. j) + value of triangle (i, k, j)
over k = i+1 .. j-1

> Can replace “+” with any associative op
> Can replace “min” with “max”
> Value on individual triangles is arbitrary

Optimal Polygon Triangulation

actually	generalizes
the	other	two	problems

> Apply dynamic programming...

1. Can find opt triangulation of 1 .. n given opt for each 1 .. i and i .. n (see below)
2. To apply this recursively, we need opt on every range i .. j
3. Solve sub-problems starting from ranges of size 3:

> opt value on i i+1 i+2 = value for that triangle (there’s only one triangulation)
> opt value on i .. j =

min (opt value on i .. k) + (opt value on k .. j) + value of triangle (i, k, j)
over k = i+1 .. j-1

> Total running time is O(n3) as before

Optimal Polygon Triangulation

> You will solve this problem (on paper) in HW5
– (actually, you can use Excel / Google Docs)

Optimal Polygon Triangulation

