CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees

Reminders

> HW4 is due today
> HW5 will be posted shortly

Dynamic Programming Review

> Apply the steps...

1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you'll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order
> Key question:
4. Can you solve the problem by combining solutions from sub-problems?
> Count sub-problems to determine running time

- total is number of sub-problems times time per sub-problem

Review From Last Time: More General Sub-problems

even if we have to guess sub-problems (non-obvious cases),
can still think about what new solutions are allowed in
> Previously:
larger sub-problems vs smaller ones to find opt substructure

- Find opt substructure by considering how the opt solution could use the last input.
> Knapsack Problem
- sub-problems are 1 .. k and weight $\mathrm{V} \leq \mathrm{W}$ - more general than original problem
- O(nW) algorithm
> All-Pairs Shortest Paths (with Negative Weights)
- application of the basic technique, but simpler code with clever sub-problems
- sub-problems are paths with intermediate nodes from 1 .. k
> Single-Source Shortest Paths with Negative Weights
- sub-problems are shortest paths of length at most k

Review From Last Time: More General Sub-problems

more sub-problems to solve but still fast when W is small
> Previously:
(re: shortest path \& opt breakout trades...) have to consider $O(n)$ solutions to problem, but still get a set that must include opt

- Find opt substructure by considering how the opt solution could use the last input.
> Knapsack Problem
- sub-problems are 1 .. k and weight $\mathrm{V} \leq \mathrm{W}$ - more general than original problem
- O(nW) algorithm
> All-Pairs Shortest Paths (with Negative Weights)
- application of the basic technique, but simpler code with clever sub-problems
- sub-problems are paths with intermediate nodes from 1 .. k
> Single-Source Shortest Paths with Negative Weights
- sub-problems are shortest paths of length at most k

Outline for Today

> Optimal Binary Search Trees

> Matrix Chain Multiplication
> Optimal Polygon Triangulation

Optimal Binary Search Tree

> Problem: Given a set of elements $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ and access frequencies f_{1}, \ldots, f_{n}, find the binary search tree storing x_{1}, \ldots, x_{n} whose total time to perform f_{1} lookups of $x_{1}, \ldots ., f_{n}$ lookups of x_{n} is smallest.
> The time to access a node at depth d is $\mathrm{O}(\mathrm{d})$

- to simplify notation, we'll assume the hidden constant is $\mathrm{C}=1$
> The time to perform flookups of data at depth d is fd
$>$ Let d_{i} be the depth at which x_{i} is stored. Then the total time is $f_{1} d_{1}+\ldots+f_{n} d_{n}$

Optimal Binary Search Tree Example

$>$ Balanced binary search tree ensures $\mathrm{d}_{\mathrm{i}} \leq \lg \mathrm{n}$,

$$
\text { so } f_{1} d_{1}+\ldots+f_{n} d_{n} \leq\left(f_{1}+\ldots+f_{n}\right) \lg n
$$

> BUT that could be far from optimal
> Let the elements be a, b, c, d, e with access frequencies $1,1,1,1,10^{100}$

$>$ Balanced tree access time $\approx 3 \cdot 10^{100}$
$>$ Any tree with e at root $\quad \approx 1 \cdot 10^{100}$

Optimal Binary Search Tree Example 2

$>$ Let the elements be a, b, c, d, e with access frequencies $1,2,3,4,5$
> The tree on the right has access time of $1 \cdot 4+2 \cdot 3+3 \cdot 2+4 \cdot 1+5 \cdot 2=30$
> Greedy would put e at the root, and get access time of

$$
1 \cdot 5+2 \cdot 4+3 \cdot 3+4 \cdot 2+5 \cdot 1=35
$$

Optimal Binary Search Tree

> Brute force: the number of possible trees is roughly 4^{n}...
> Apply dynamic programming...

- write the solution in terms of solutions to sub-problems
> In this case, considering how the last element is used in the optimal solution will not lead anywhere...
- (no obvious relationship to trees using only 1 .. $n-1$)

Optimal Binary Search Tree

> Apply dynamic programming...

- write the solution in terms of solutions to sub-problems
> Still works to think about what the optimal solution looks like...
$>$ Some element x_{i} must be at the root of the tree
- then left subtree has x_{1}, \ldots, x_{i-1}
- and right subtree has x_{i+1}, \ldots, x_{n}
> Claim: both subtrees must be themselves optimal over those subsets of the elements

Optimal Binary Search Tree

> Some element x_{i} must be at the root of the tree

- then left subtree has x_{1}, \ldots, x_{i-1} and right subtree has x_{i+1}, \ldots, x_{n}
> Claim: both subtrees must be themselves optimal over those subsets of the elements
$>$ Let depths be d_{1}, \ldots, d_{i-1} in left subtree (without root)
$>$ Total access time is $\mathrm{f}_{1} \mathrm{~d}_{1}+\ldots+\mathrm{f}_{\mathrm{i}-1} \mathrm{~d}_{\mathrm{i}-1}$

Optimal Binary Search Tree

> Claim: both subtrees must be themselves optimal over those subsets of the elements
> Let depths be $\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{i}-1}$ in left subtree (without root)
$>$ Total access time is $\mathrm{f}_{1} \mathrm{~d}_{1}+\ldots+\mathrm{f}_{\mathrm{i}-1} \mathrm{~d}_{\mathrm{i}-1}$
$>$ With root, time is $\mathrm{f}_{1}\left(\mathrm{~d}_{1}+1\right)+\ldots+\mathrm{f}_{\mathrm{i}-1}\left(\mathrm{~d}_{\mathrm{i}-1}+1\right)$

$$
=f_{1} d_{1}+\ldots+f_{i-1} d_{i-1}+f_{1}+\ldots+f_{i-1}
$$

constant
independent of depths

Optimal Binary Search Tree

> Apply dynamic programming...

- write the solution in terms of solutions to sub-problems
$>$ Some element x_{i} must be at the root of the tree
- the left subtree must be the opt search tree over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}-1}$
- the right subtree must be the opt search tree over x_{i+1}, \ldots, x_{n}
$>$ Find the correct root by trying them all
- opt value $=\boldsymbol{\operatorname { m i n }}\left(\right.$ opt value on $\left.x_{1}, \ldots, \mathrm{x}_{\mathrm{i}-1}\right)+\mathrm{f}_{1}+\ldots+\mathrm{f}_{\mathrm{i}-1}+$ (opt value on $\left.x_{i+1}, \ldots, x_{n}\right)+f_{i+1}+\ldots+f_{n}$ $+f_{i}$
over $\mathrm{i}=1$.. n

Optimal Binary Search Tree

> Apply dynamic programming...

- write the solution in terms of solutions to sub-problems
$>$ Some element x_{i} must be at the root of the tree
- the left subtree must be the opt search tree over x_{1}, \ldots, x_{i-1}
- the right subtree must be the opt search tree over x_{i+1}, \ldots, x_{n}
$>$ Find the correct root by trying them all
- let $F=f_{1}+\ldots+f_{n}$
- opt value $=\boldsymbol{\operatorname { m i n }}\left(\right.$ opt value on $\left.x_{1}, \ldots, x_{i-1}\right)+F$ (opt value on $\mathrm{x}_{\mathrm{i}+1}, \ldots, \mathrm{x}_{\mathrm{n}}$) over $\mathrm{i}=1$.. n

Optimal Binary Search Tree

> Apply dynamic programming...

- write the solution in terms of solutions to sub-problems
$>$ Some element x_{i} must be at the root of the tree
- the left subtree must be the opt search tree over x_{1}, \ldots, x_{i-1}
- the right subtree must be the opt search tree over x_{i+1}, \ldots, x_{n}
$>$ Find the correct root by trying them all
- let $\mathrm{F}=\mathrm{f}_{1}+\ldots+\mathrm{f}_{\mathrm{n}}$
- opt value $=F+\min \left(\right.$ opt value on $\left.x_{1}, \ldots, x_{i-1}\right)+$ (opt value on x_{i+1}, \ldots, x_{n}) over $i=1$.. n

Optimal Binary Search Tree

> Apply dynamic programming...

1. Can find opt on x_{1}, \ldots, x_{n} from opt on prefixes x_{1}, \ldots, x_{i-1} and suffixes x_{i+1}, \ldots, x_{n}
2. To apply this recursively, we need opt on every range x_{i}, \ldots, x_{j}
$>$ (suffix for root at $x_{i}>$ prefix for root at $x_{j}>$ sub-problem on x_{i+1}, \ldots, x_{j-1})
3. Solve sub-problems starting from ranges of size 1
$>$ only tree on just x_{i} is one node x_{i} : opt value $=f_{i}$
$>$ for x_{i}, \ldots, x_{j}, try every root...
opt value $=F+\boldsymbol{m i n}\left(\right.$ opt value on $\left.x_{i}, \ldots, x_{k-1}\right)+$
(opt value on x_{k+1}, \ldots, x_{j}) over $k=i . . j$

Optimal Binary Search Tree

> Apply dynamic programming...

1. Can find opt on x_{1}, \ldots, x_{n} from opt on prefixes x_{1}, \ldots, x_{i-1} and suffixes x_{i+1}, \ldots, x_{n}
2. To apply this recursively, we need opt on every range x_{i}, \ldots, x_{j}
3. Solve sub-problems starting from ranges of size 1. Then use formula:
$>$ opt value $=\mathrm{F}+\boldsymbol{\operatorname { m i n }}\left(\right.$ opt value on $\left.\mathrm{x}_{\mathrm{i}}, \ldots, \mathrm{x}_{\mathrm{k}-1}\right)+\left(\right.$ opt value on $\mathrm{x}_{\mathrm{k}+1}, \ldots, \mathrm{x}_{\mathrm{j}}$) over $\mathrm{k}=\mathrm{i} . . \mathrm{j}$
$>\mathrm{O}\left(\mathrm{n}^{2}\right)$ sub-problems
$>$ Total running time is $O\left(n^{3}\right)$

- probably usable for n in the thousands

Optimal Binary Search Tree

> Can be implemented in a spreadsheet as well...

- though it would get difficult for more than $\mathrm{n}=30$ or so
- (in example, "Freq" sheet stores sum of frequencies for each range i .. j)

Optimal Binary Search Tree

> Can be implemented in a spreadsheet as well...

- though it would get difficult for more than $\mathrm{n}=30$ or so
- (in example, "Freq" sheet stores sum of frequencies for each range i .. j)

	A	B	C	D	E	F	$f x$	$=\mathrm{MIN}(\mathrm{F} 3, \mathrm{~B} 2+\mathrm{F} 4, \mathrm{C} 2+\mathrm{F} 5, \mathrm{D} 2+\mathrm{F} 6, \mathrm{E} 2)+\mathrm{Freq}!\mathrm{F} 2$
1		a	b	c	d	e		
2	a	1	4	10	18	F2		
3	b		2	7	15	26		
4	c			3	10	20		
5	d				4	13		
6	e					5		

Foreword

> Problems that are hard on graphs are often easy on trees...

- tree structure works nicely within dynamic programming framework
> Will see that one way to solve the hard problems on graphs: approximate those graphs with trees

Outline for Today

> Optimal Binary Search Trees
> Matrix Chain Multiplication
> Optimal Polygon Triangulation

Matrix Chain Multiplication

$>$ Problem: Given matrix dimensions $\mathrm{d}_{0} \times \mathrm{d}_{1}, \mathrm{~d}_{1} \times \mathrm{d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}-1} \times \mathrm{d}_{\mathrm{n}}$, find the order in which to multiply them all together in min time.

- can only multiply $m_{1} \times n_{1}$ by $m_{2} \times n_{2}$ if $n_{1}=m_{2}$
$>$ that is why the second matrix has dimensions $d_{1} \times d_{2}$ above
- time to multiply two such matrices is $m_{1} n_{1} m_{2}$
- result is a matrix with dimensions $m_{1} \times n_{2}$
$>$ result of multiplying $d_{i-1} \times d_{i}, \ldots, d_{j-1} \times d_{j}$ is matrix with dimensions $d_{i-1} \times d_{j}$
> Example: matrices A B C
- can be multiplied as (A B) C or A (B C)
- result will be the same, but time could be different

Matrix Chain Multiplication

> Example: matrices A B C
$>(A B) C$

- A B in time $10 \cdot 100 \cdot 1=1,000$
- $(A B) C$ in time $10 \cdot 1 \cdot 10=100$
- total time is 1,100

	rows	cols
\mathbf{A}	10	100
\mathbf{B}	100	1
\mathbf{C}	1	10

$>A(B C)$

- $\quad B C$ in time $100 \cdot 1 \cdot 10=1,000$
- $A(B C)$ in time $10 \cdot 100 \cdot 10=10,000$
- total time is 11,000

Matrix Chain Multiplication

> No brute force: exponentially many orderings
> Apply dynamic programming...

- write the solution in terms of solutions to sub-problems
- think about what the optimal solution might look like...
> Q: What is the last multiplication performed in the opt solution
$>$ A: Must be $\left(A_{1} \ldots A_{i-1}\right)\left(A_{i} \ldots A_{n}\right)$ for some i
- matrices can only be multiplied by those next to them
- each multiplication merges two groups together into one
- last merges the final two groups of adjacent matrices

Matrix Chain Multiplication

> Apply dynamic programming...

- write the solution in terms of solutions to sub-problems
> Q: What is the last multiplication performed in the opt solution
$>$ A: Must be $\left(A_{1} \ldots A_{i}\right)\left(A_{i+1} \ldots A_{n}\right)$ for some i
> Opt solution must multiply each of $A_{1} \ldots A_{i}$ and $A_{i+1} \ldots A_{n}$ optimally
- total time is time to multiply each group plus $d_{0} d_{i} d_{n}$
- any way of multiplying $A_{1} \ldots A_{i}$ is allowed, so the minimum total time is achieved by taking the best one > for each choice of i, the term $d_{0} d_{i} d_{n}$ is a fixed constant

Matrix Chain Multiplication

> Apply dynamic programming...

1. Can find opt on A_{1}, \ldots, A_{n} from opt on prefixes $A_{1}, . ., A_{i}$ and suffixes A_{i+1}, \ldots, A_{n}
2. To apply this recursively, we need opt on every range A_{i}, \ldots, A_{j}
$>$ (same as before: prefix of a suffix is an arbitrary range)
3. Solve sub-problems starting from ranges of size 1
$>$ multiply A_{1} by itself in 0 time (already have it)
$>$ for A_{i}, \ldots, A_{j}, try every splitting point...
opt value $=\boldsymbol{m i n}\left(\right.$ opt value on $\left.A_{i}, \ldots, A_{k}\right)+d_{i-1} d_{k} d_{j}+$
(opt value on A_{k+1}, \ldots, A_{j}) over $k=i . . j-1$

Matrix Chain Multiplication

> Apply dynamic programming...

1. Can find opt on A_{1}, \ldots, A_{n} from opt on prefixes A_{1}, \ldots, A_{i} and suffixes A_{i+1}, \ldots, A_{n}
2. To apply this recursively, we need opt on every range A_{i}, \ldots, A_{j}
3. Solve sub-problems starting from ranges of size 1. Then use formula:
$>$ opt value $=\boldsymbol{\operatorname { m i n }}$ (opt value on $\left.A_{i}, \ldots, A_{k}\right)+\left(\right.$ opt value on $\left.A_{k+1}, \ldots, A_{j}\right)+d_{i-1} d_{k} d_{j}$ over $k=i . . j-1$
$>\mathrm{O}\left(\mathrm{n}^{2}\right)$ sub-problems
$>$ Total running time is $O\left(n^{3}\right)$

- probably usable for n in the thousands

Matrix Chain Multiplication

> This looks very similar to previous problem...

1. Compute opt on every range A_{i}, \ldots, A_{j}
2. Solve sub-problems starting from ranges of size 1. Then use formula:
> opt value $=\boldsymbol{m i n}\left(\right.$ opt value on $\left.A_{i}, \ldots, A_{k}\right)+\left(\right.$ opt value on $\left.A_{k+1}, \ldots, A_{j}\right)+d_{i-1} d_{k} d_{j}$ over $k=i . . j-1$
vs
3. Compute opt on every range x_{i}, \ldots, x_{j}
4. Solve sub-problems starting from ranges of size 1 , then use formula:
$>$ opt value $=\boldsymbol{m i n}\left(\right.$ opt value on $\left.x_{i}, \ldots, x_{k-1}\right)+\left(\right.$ opt value on $\left.x_{k+1}, \ldots, x_{j}\right)+F$ over $k=i \ldots j$
$>$ This is not an accident...

Matrix Chain Multiplication

> Orderings of multiplications are trees...

- they are "parse trees" of the expression
- e.g., for (AB) C versus A (BC):

> These are essentially the same problem.
- only notable difference is matrices only appearing in leaves

Outline for Today

> Optimal Binary Search Trees
> Matrix Chain Multiplication
> Optimal Polygon Triangulation

Optimal Polygon Triangulation

> To triangulate a polygon is to add edges (chords) between vertices of the polygon so that it becomes a union of non-overlapping triangles.

- allowed to touch only on edges

Optimal Polygon Triangulation

> Problem: Find the triangulation of a given (convex) polygon that optimizes some quality metric over the choice of triangles.
> Example metrics:

- sum of the side lengths (minimize)

- area divided by the sum of squared side lengths (minimize)
> prefers triangles that are "more equilateral"

Optimal Polygon Triangulation

> Applications:

- graphics
> 3D hardware wants triangles
> poorly shaped triangles can result in visual artifacts
- finite element analysis (engineering \& physics)
> reduce complicated shapes to simple ones: triangles
$>$ often want triangles that are close to equilateral

Optimal Polygon Triangulation

> Triangulations are trees!

- label vertices 1 .. n
- picture:
$>$ red is n
$>$ marked edge to 1

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> Edge (1,n) must be part of a triangle, so 1 and n are both connected by chords to some node i
- here, $\mathrm{i}=2$

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
$>(1, i, n)$ triangle cuts polygon in 1-2 pieces

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> $(1, i, \mathrm{n})$ triangle cuts polygon in 1-2 pieces
- must triangulate separately since chords cannot cross

W

Optimal Polygon Triangulation

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> $(1, i, \mathrm{n})$ triangle cuts polygon in 1-2 pieces
- must triangulate separately since chords cannot cross

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
$>(1, i, n)$ triangle cuts polygon in 1-2 pieces
> 1 .. i and i.. n are triangulated separately

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1.. iandi.. n are triangulated separately
- $(1, i)$ is root of one subtree
- (i, n) is root of the other

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1.. iandi.. n are triangulated separately
- $(1,2)$ is an edge $=>$ leaf
- $(2,8)$ is a chord $=>$ subtree

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1 .. iandi.. n are triangulated recursively
- $(2,8)$ is a chord $=>$ subtree

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1 .. iandi.. n are triangulated recursively
- $(2,8)$ is a chord $=>$ subtree
- $(2,8)$ makes triangle with 6

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1 .. iandi.. n are triangulated recursively
- $(1, i)$ is root of one subtree
- (i,n) is root of the other

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1.. iandi.. n are triangulated recursively
- $(1, i)$ is root of one subtree
- (i, n) is root of the other

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1.. iandi.. n are triangulated recursively
- $(1, i)$ is root of one subtree
- (i, n) is root of the other

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1 .. iandi.. n are triangulated recursively
- $(1, i)$ is root of one subtree
- (i, n) is root of the other

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1 .. iandi.. n are triangulated recursively
- $(1, i)$ is root of one subtree
- (i,n) is root of the other

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1 .. iand i.. n are triangulated recursively
- $(1, i)$ is root of one subtree
- (i, n) is root of the other

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1 .. iand i.. n are triangulated recursively
- $(1, i)$ is root of one subtree
- (i, n) is root of the other

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1.. iandi.. n are triangulated recursively
- $(1, i)$ is root of one subtree
- (i, n) is root of the other

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1.. iandi.. n are triangulated recursively
- $(1, i)$ is root of one subtree
- (i, n) is root of the other

W

Optimal Polygon Triangulation

> Triangulations are trees!

- leaves are edges
- root is edge $(1, n)$
> 1 and n are both connected to some i
> 1 .. iandi.. n are triangulated recursively
- $(1, i)$ is root of one subtree
- (i, n) is root of the other

W

Optimal Polygon Triangulation

> Any triangulation is a tree.
> Likewise, any tree with edges as leaves is a triangulation.

- (not hard to check)
> Hence, this is essentially the same problem as the other two, so the same algorithm should work...

Optimal Polygon Triangulation

> Apply dynamic programming...

1. Can find opt triangulation of 1 .. n given opt for each 1 .. i and i .. n (see below)
2. To apply this recursively, we need opt on every range i .. j
3. Solve sub-problems starting from ranges of size 3:
$>$ opt value on $\mathrm{i}+1 \mathrm{i}+2=$ value for that triangle (there's only one triangulation)
> opt value on i.. $\mathrm{j}=$
min (opt value on i .. k) + (opt value on k .. j) + value of triangle (i, k, j)
over $\mathrm{k}=\mathrm{i}+1$.. $\mathrm{j}-1$
> Can replace " + " with any associative op
$>$ Can replace "min" with "max"
$>$ Value on individual triangles is arbitrary
actually generalizes the other two problems

Optimal Polygon Triangulation

> Apply dynamic programming...

1. Can find opt triangulation of 1 .. n given opt for each 1 .. i and i .. n (see below)
2. To apply this recursively, we need opt on every range i .. j
3. Solve sub-problems starting from ranges of size 3:
$>$ opt value on $\mathrm{i}+1 \mathrm{i}+2$ = value for that triangle (there's only one triangulation)
> opt value on i.. $\mathrm{j}=$
min (opt value on i .. k) + (opt value on k .. j) + value of triangle (i, k, j) over $\mathrm{k}=\mathrm{i}+1$.. $\mathrm{j}-1$
> Total running time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ as before

Optimal Polygon Triangulation

> You will solve this problem (on paper) in HW5

- (actually, you can use Excel / Google Docs)

