CSE 417 Dynamic Programming (pt 3) More General Sub-problems

UNIVERSITY of WASHINGTON

Reminders

> HW4 is due on Friday

start last week

Dynamic Programming Review

- > Apply the steps...
 - 1. Describe solution in terms of solution to *any* sub-problems
 - 2. Determine all the sub-problems you'll need to apply this recursively
 - 3. Solve every sub-problem (once only) in an appropriate order
- > Key question:
 - 1. Can you solve the problem by combining solutions from sub-problems?
- > Count sub-problems to determine running time
 - total is number of sub-problems times time per sub-problem

Review From Last Time: Consider Last Element of Opt Solution

> **Q**: How does the opt solution use the last element of the input?

- construct a (small) set of solutions from sub-problems that <u>must</u> include the opt

> Weighted Interval Scheduling

- opt value = max(opt with last interval, opt without last interval)
- opt value without last interval is opt value on prefix of the data

> Max Sub-array Sum

- change the problem to find opt interval ending at A[n-1]
- again, only need opt values on prefixes of the data

> Optimal Breakout Trades

- if sell on last day, max of choice where it starts — $O(n^2)$ worst case

Outline for Today

> Knapsack Problem

- > All-Pairs Shortest Paths with Negative Weights
- > Shortest Paths with Negative Weights
- > Inference with Hidden Markov Models

> Problem: Given objects with weights w₁, ..., w_n and values v₁, ..., v_n and a weight limit W, find the subset of the items with total weight at most W that maximizes the total value.

W

- any subset $\{i_1, \dots, ik\}$ such that $w_{i_1} + \dots + w_{i_k} \le W$
- chosen to maximize $v_{i_1} + ... + v_{i_k}$

Knapsack Example

- > Consider these items with a weight limit of 11.
- > Optimal value is 40
- > Optimal solution is {3, 4}

#	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

W

- > Similar problems arise frequently in practice
 - can easily handle adding additional restrictions of various types
 see HW6
 - another example of robustness to problem changes

- > Brute force doesn't work: there are 2ⁿ subsets to try
- > Apply divide and conquer...
- > **Q**: Is the last element in the optimal solution?
 - if no, then opt value is the same as on items 1, ..., n-1
 - if yes, then opt value = v_n + opt value on 1, ..., n-1

- > Brute force doesn't work: there are 2ⁿ subsets to try
- > Apply divide and conquer...
- > **Q**: Is the last element in the optimal solution?
 - if no, then opt value is the same as on items 1, ..., n-1
 - if yes, then opt value = v_n + opt value on 1, ..., n-1

No! Could have w_n + (weight of opt on 1, ..., n-1) > W

- > Brute force doesn't work: there are 2ⁿ subsets to try
- > Apply divide and conquer...
- > **Q**: Is the last element in the optimal solution?
 - if no, then opt value is the same as on items 1, ..., n-1
 - if yes, then opt value = v_n + (opt value on 1, ..., n-1 with weight limit of W w_n)

- > Brute force doesn't work: there are 2ⁿ subsets to try
- > Apply divide and conquer...
- > **Q**: Is the last element in the optimal solution?
 - if no, then opt value is the same as on items 1, ..., n-1
 - if yes, then opt value = v_n + (opt value on 1, ..., n-1 with weight limit of W w_n)

opt solution on 1, ..., n must be optimal on 1, ..., n-1 with weight limit W - w_n

> Apply dynamic programming...

- 1. Can find opt value for 1, ..., n and limit W using only
 - (a) opt value for 1, ..., n-1 and limit W and
 - (b) opt value for 1, ..., n-1 and limit W w_n
- 2. Need opt values sub-problems on 1, ..., j-1 and limit V with $j \le n$ and $V \le W$
- 3. Solve each of these starting with V=0 or j=1
 - > opt value for 1, ..., j and limit 0 = 0
 - > opt value for 1 and limit V = v_1 if $w_1 \le V$ and 0 otherwise
 - > opt value for 1, ..., j and limit V =
 - max(opt value for 1, ..., j-1 and limit V,
 - v_j + (opt value for 1, ..., j-1 and limit V w_j) if $w_j \le V$)

#	value	weight			
1	1	1			
2	6	2			
3	18	5			
4	22	6			
5	28	7			

W

Knapsack Example

		0	1	2	3	4	5	6	7	8	9	10	11
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
ļ	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

W + 1

- > Start by filling in first column and first row
 - w₁ = 1, so we get v₁ for any W > 0

#	value	weight			
1	1	1			
2	6	2			
3	18	5			
4	22	6			
5	28	7			

Knapsack Example

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	1 1	1
	7			1
	/	7	7 7	7
{1, 2, 3} 0 1 6 7 7 18 19 24 25	25	25	25 25	25
{1,2,3,4} 0 1 6 7 7 18 22 24 28	29	28	29 29	40
{1,2,3,4,5} 0 1 6 7 7 18 22 28 29	34	29	34 34	40

W + 1

> For {1, 2, 3} and 5: max of spot above (skipping 3) and 18 + spot for {1, 2} and 0

#	value	weight			
1	1	1			
2	6	2			
3	18	5			
4	22	6			
5	28	7			

Knapsack Example

		0	1	2	3	4	5	6	7	8	9	10	11
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40
	> For {1, 2, 3, 4	4} an	d 11	: ma>			abov spot			<u> </u>			

W + 1

#	value	weight			
1	1	1			
2	6	2			
3	18	5			
4	22	6			
5	28	7			

W

Knapsack Example

		0	1	2	3	4	5	6	7	8	9	10	11
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
 n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	<u>18</u>	22	24	28	29	29	40
Ļ	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

W + 1

For {1, 2, 3, 4, 5} and 11: max of spot above (skipping 5) and 28 + spot for {1, 2, 3, 4} and 4

#	value	weight			
1	1	1			
2	6	2			
3	18	5			
4	22	6			
5	28	7			

Knapsack Example

		0	1	2	3	4	5	6	7	8	9	10	11
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
 n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
Ļ	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40
2	> Recovers the	e opt	imal	valu	e of 4	40							

W + 1

- > One sub-problem for each prefix and weight limit, so nW total
- > Running time is O(nW) since O(1) per table entry
- > This is not efficient if W is large...
 - theory wants time polynomial in lg W (the number of bits used to store W)
 - this algorithm "pseudo-polynomial"
 - > (polynomial if the numbers are written in unary, not binary)
 - still extremely useful in practice...

- > Running time is O(nW)
- > This is not efficient if W is large
 - should not actually expect an efficient algorithm because...
- > Knapsack is an NP-complete problem
 - we do not believe any such problem has an efficient algorithm
 - that said, this is an "easy" NP-complete problem
 - > our algorithm solves it when W is small
 - > and you can efficiently approximate the solution for large W
 - more later...

Outline for Today

- > Knapsack Problem
- > All-Pairs Shortest Paths with Negative Weights

- > Shortest Paths with Negative Weights
- > Inference with Hidden Markov Models

- > **Problem**: Given a weighted graph G on nodes 1 .. n, compute the lengths of the shortest paths between *all pairs* of nodes.
 - $\Theta(n^2)$ outputs
 - edge weights are allowed to be **negative**
 - BUT there can be no cycles with negative total weight
- > We will see reasons to allow negative weight edges in the future...
- > Here, we will discuss the Floyd-Warshall algorithm
 - names suggest some non-obvious ideas

- > Usual approach will work for this problem...
 - i.e., consider the sub-problem with a node or edge removed
- > However, result is nicest with a different choice of sub-problems
- > Sub-problems will use the whole graph G but will return lengths of shortest paths that only use 1 .. k as *intermediate nodes*.

- > Sub-problems will use the whole graph G but will return shortest paths that only use 1 .. k as *intermediate nodes* on the paths.
- > When k = 0, no intermediate nodes are allowed...
 - only path from u to v is the edge (u,v) if it exists
- > When k > 0, we can use the solution with 1 .. k-1 allowed...
 - **Q**: does the shortest path from u to v go through k?
 - If not, then shortest path is the same as with 1 .. k-1 allowed
 - If yes, then the shortest path looks like u ~> k ~> v...

- > Sub-problems will use the whole graph G but will return shortest paths that only use 1 .. k as *intermediate nodes* on the paths.
- > When k > 0, we can use the solution with 1 .. k-1 allowed
 - **Q**: does the shortest path from u to v go through k?
 - If not, then shortest path is the same as with 1 .. k-1 allowed
 - If yes, then the shortest path looks like u ~> k ~> v,
 where both the u ~> k part and the k ~> v part <u>do not go through k</u>
 - > (a cycle could only increase the length since no negative cycles)
 - > we already know the shortest u ~> k and k ~> v paths

- > Sub-problems will use the whole graph G but will return shortest paths that only use 1 .. k as *intermediate nodes* on the paths.
- > When k = 0, no intermediate nodes are allowed
 - only path from u to v is the edge (u,v) if it exists
- > When k > 0, we can use the solution with 1 .. k-1 allowed
 - shortest path from u to v with 1 .. k allowed = min(shortest path from u to v with 1 .. k-1 allowed, shortest path from u to k with 1 .. k-1 allowed + shortest path from k to v with 1 .. k-1 allowed)

float[][] dist = /* new n x n table */

```
for (int u = 0; u < n; u++)
for (int v = 0; v < n; v++)
    dist[u][v] = (u == v) 0 : length[u][v]; // infinity if no edge</pre>
```

- > Total running time is O(n³)
- > Using n calls to Dikjstra (with a binary heap) is O(n m log n)
 - slower if $m = O(n^2)$
 - dynamic programming is saving *repeated work* across the n calls
- > Can also compute with Strassen's algorithm
 - (i.e., fast matrix multiplication)
 - reduces the running time below O(n³)
 - BUT only with some assumptions on the edge weights

Outline for Today

- > Knapsack Problem
- > All-Pairs Shortest Paths with Negative Weights

- > Shortest Paths with Negative Weights
- > Inference with Hidden Markov Models

- > **Problem**: Given a weighted graph G on nodes 1 .. n and a node s, compute the length of the shortest paths from s to other nodes.
 - edge weights are now allowed to be **negative**
 - BUT there can be no cycles with negative total weight
 - just asking for length of shortest path, but can get path itself in usual way
- > We will discuss the Bellman-Ford algorithm
 - Bellman invented dynamic programming with this algorithm
 - again, names also suggest some non-obvious ideas

- > Usual approach will not work for this problem...
 - (i.e., considering the sub-problem with a node or edge removed)
 - > (exercise: try it and see what goes wrong here that didn't with all-pairs paths)
 - need to think of a new type of sub-problem to use
- > Sub-problems will be the whole graph G but will return lengths of shortest paths having at most k edges.
 - any edges can be used, but the paths can have at most k of them
 - shortest paths cannot have more than n-1 edges
 - > otherwise, we would have a cycle
 - > all cycles have non-negative cost

- > Sub-problems will be the whole graph G but will return lengths of shortest paths having at most k edges.
- > When k = 0, there is no path to v unless v = s
 - so shortest path is infinite
- > When k > 0, we can use the solution with at most k-1 edges
 - Q: does the shortest path use k edges?
 - If not, then shortest path is the same as with at most k-1 edges
 - − If yes, then shortest path is s \sim > u → v, where (u,v) is an edge > s \sim > has k-1 edges

- > Sub-problems will be the whole graph G but will return lengths of shortest paths having at most k edges.
- > When k = 0, there is no path to v unless v = s
 - so shortest path is infinite
- > When k > 0, we can use the solution with at most k-1 edges
 - shortest path to v with at most k edges = min(shortest path to v with at most k-1 edges, min (shortest path to u with at most k-1 edges + length of (u,v)) over all edges (u,v))

> Naive implementation:

> Better implementation:

for k = 1 .. n-1 length_k = length_{k-1} for each (u,v) in E length_k[v] = min(length_k[v], length_{k-1}[u] + edgeLength[u][v])

O(nm) time

- > Only need to remember the $length_{k-1}$ instead of whole table
- > Other ways to improve the practical performance
 - see the textbook
 - worst case is still O(nm)
- > Alternative solution: compute shortest path with exactly k edges
 - take minimum over all k at the end
 - that would allow you to find the min average edge cost instead

Outline for Today

- > Knapsack Problem
- > All-Pairs Shortest Paths with Negative Weights
- > Shortest Paths with Negative Weights
- > Inference with Hidden Markov Models

- > **Definition**: a Markov chain is a model of a random process that starts a random state x_1 and transitions randomly between states $x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow ...$ according to fixed probabilities.
 - each x_i is in a fixed "state set", 1 .. n
 - probabilities p_{ij} of each transition, $x_i \rightarrow x_j$, depend only on x_i and x_j > i.e. it doesn't matter what states came before x ("Markov property")

> i.e., it doesn't matter what states came before x_i ("Markov property")

- > Problem: given a Markov chain with states 1 .. n, probabilities q_{ij} of outputting j when in state i, and specific outputs y₁, ..., y_m, find the sequence of states x₁, ..., x_m that best explains the output.
 - − i.e., maximize the probability that the chain goes through $x_1 \rightarrow ... \rightarrow x_m$ times the probability of those states producing those outputs
 - i.e., $p_{x_1}(p_{x_1x_2}\cdots p_{x_{m-1}x_m})(q_{x_1y_1}\cdots q_{x_my_m})$

- > Example: stock market trends (adapted from "Spoken Language Processing", Ch. 8)
 - Markov chain has states for up, down, & sideways trends > cannot go from up to down or vice versa
 - Outputs are price changes
- > Find the best explanation for [-1%, -1%, -1%, +10%] up
 - best fits down

must have sideways between...

	up	side	down
up	0.50	0.25	
side	0.50	0.50	0.50
down		0.25	0.50

	up	side	down
+10%	0.33		
+1%	0.33	0.50	0.10
-1%	0.33	0.50	0.70
-5%			0.20

> Many applications including...

- telecommunications
 - > used by cellular networks (Viterbi founded Qualcomm)
- speech recognition (many)
 - > e.g. (vastly simplified), determine intended sounds from actual sounds
 - includes not just similar sounds but likelihood they would appear next to each other
 - (outputs in frequency-domain... use FFT to compute them)
- natural language processing
 - > parsing
- computational biology

- > To compute states that are most likely given the outputs, apply dynamic programming...
- > Start with the last output...
- > For each ending state, want to determine the maximum probability over all sequences of states ending in that state
 - return the state with the largest probability as the last state of the solution

- > For each state, want to determine the maximum probability over all sequences of states ending in that state.
- > For each choice of x_m , find the maximum value of
 - $p_{x_1}(p_{x_1x_2}\cdots p_{x_{m-1}x_m})(q_{x_1y_1}\cdots q_{x_my_m})$ over choices of x₁, ..., x_{m-1}
 - this = $p_{x_1}(p_{x_1x_2}\cdots p_{x_{m-2}x_{m-1}})(q_{x_1y_1}\cdots q_{x_{m-1}y_{m-1}})p_{x_{m-1}x_m}q_{x_my_m}$
 - if we fix x_{m-1} , then maximizing the first part is the same problem applied to just $y_1, ..., y_{m-1}$
 - if we had the solutions for that, then we could compute this by taking the maximum over each choice of x_{m-1}

> Sub-problem for each prefix $y_1, ..., y_k$ of the outputs

- > max over $x_1, ..., x_{k-1}$ of $p_{x_1}(p_{x_1x_2}\cdots p_{x_{k-1}x_k})(q_{x_1y_1}\cdots q_{x_ky_k})$ = max over x_{k-1} of $p_{x_{k-1}x_k}q_{x_ky_k} x$ (max over $x_1, ..., x_{k-2}$ of $p_{x_1}(p_{x_1x_2}\cdots p_{x_{k-2}x_{k-1}})(q_{x_1y_1}\cdots q_{x_{k-1}y_{k-1}}))$
- > Fill in solutions for k = 1 directly from formulas
- > Fill in k = 2 ... m using the equation above
- > Total running time is O(n²m) (... from double loop on states)

- > This problem assumed we were given the Markov chain only the states it went through were unknown
- > You can also find the Markov model that best fits the data
- > Like coordinate descent, usual approach is an iterative algorithm
- > Each iteration requires two steps, one of which is another dynamic programming algorithm

