
CSE 417
Dynamic Programming (pt 3)
More General Sub-problems



> HW4 is due on Friday
– start last week

Reminders



> Apply the steps...
1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you’ll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order

> Key question:
1. Can you solve the problem by combining solutions from sub-problems?

> Count sub-problems to determine running time
– total is number of sub-problems times time per sub-problem

Dynamic Programming Review



> Q: How does the opt solution use the last element of the input?
– construct a (small) set of solutions from sub-problems that must include the opt

> Weighted Interval Scheduling
– opt value = max(opt with last interval, opt without last interval)
– opt value without last interval is opt value on prefix of the data

> Max Sub-array Sum
– change the problem to find opt interval ending at A[n-1]
– again, only need opt values on prefixes of the data

> Optimal Breakout Trades
– if sell on last day, max of choice where it starts — O(n2) worst case

Review From Last Time:
Consider Last Element of Opt Solution



> Knapsack Problem
> All-Pairs Shortest Paths with Negative Weights
> Shortest Paths with Negative Weights
> Inference with Hidden Markov Models

Outline for Today



> Problem: Given objects with weights w1, ..., wn and values v1, ..., vn
and a weight limit W, find the subset of the items with total weight 
at most W that maximizes the total value.

– any subset {𝑖1, … , 𝑖𝑘} such that 𝑤)* +	…+ 𝑤)- ≤ 𝑊
– chosen to maximize 𝑣)* +	…+ 𝑣)-

Knapsack



> Consider these items
with a weight limit of 11.

> Optimal value is 40
> Optimal solution is {3, 4}

Knapsack Example



> Similar problems arise frequently in practice
– can easily handle adding additional restrictions of various types

> see HW6
– another example of robustness to problem changes

Knapsack



> Brute force doesn’t work: there are 2n subsets to try

> Apply divide and conquer...

> Q: Is the last element in the optimal solution?
– if no, then opt value is the same as on items 1, ..., n-1
– if yes, then opt value = vn + opt value on 1, ..., n-1

Knapsack

is this true?



> Brute force doesn’t work: there are 2n subsets to try

> Apply divide and conquer...

> Q: Is the last element in the optimal solution?
– if no, then opt value is the same as on items 1, ..., n-1
– if yes, then opt value = vn + opt value on 1, ..., n-1

Knapsack

No! Could have wn + (weight of opt on 1, ..., n-1) > W



> Brute force doesn’t work: there are 2n subsets to try

> Apply divide and conquer...

> Q: Is the last element in the optimal solution?
– if no, then opt value is the same as on items 1, ..., n-1
– if yes, then opt value = vn + (opt value on 1, ..., n-1 with weight limit of W – wn)

Knapsack

optimal substructure



> Brute force doesn’t work: there are 2n subsets to try

> Apply divide and conquer...

> Q: Is the last element in the optimal solution?
– if no, then opt value is the same as on items 1, ..., n-1
– if yes, then opt value = vn + (opt value on 1, ..., n-1 with weight limit of W – wn)

Knapsack

opt solution on 1, ..., n
must be optimal on 1, ..., n-1 with weight limit W - wn



> Apply dynamic programming...
1. Can find opt value for 1, ..., n and limit W using only

(a) opt value for 1, ..., n-1 and limit W and
(b) opt value for 1, ..., n-1 and limit W - wn

2. Need opt values sub-problems on 1, ..., j-1 and limit V with j ≤ n and V ≤ W
3. Solve each of these starting with V=0 or j=1

> opt value for 1, ..., j and limit 0 = 0
> opt value for 1 and limit V = v1 if w1 ≤ V and 0 otherwise
> opt value for 1, ..., j and limit V =

max(opt value for 1, ..., j-1 and limit V,
vj + (opt value for 1, .., j-1 and limit V – wj) if wj ≤ V )

Knapsack



> Start by filling in first column and first row
– w1 = 1, so we get v1 for any W > 0

Knapsack Example



> For {1, 2, 3} and 5: max of spot above (skipping 3) and
18 + spot for {1, 2} and 0

Knapsack Example



> For {1, 2, 3, 4} and 11: max of spot above (skipping 4) and
22 + spot for {1, 2, 3} and 5

Knapsack Example



> For {1, 2, 3, 4, 5} and 11: max of  spot above (skipping 5) and
28 + spot for {1, 2, 3, 4} and 4

Knapsack Example



> Recovers the optimal value of 40

Knapsack Example



> One sub-problem for each prefix and weight limit, so nW total

> Running time is O(nW) since O(1) per table entry

> This is not efficient if W is large...
– theory wants time polynomial in lg W (the number of bits used to store W)
– this algorithm “pseudo-polynomial”

> (polynomial if the numbers are written in unary, not binary)
– still extremely useful in practice...

Knapsack



> Running time is O(nW)

> This is not efficient if W is large
– should not actually expect an efficient algorithm because...

> Knapsack is an NP-complete problem
– we do not believe any such problem has an efficient algorithm
– that said, this is an “easy” NP-complete problem

> our algorithm solves it when W is small
> and you can efficiently approximate the solution for large W

– more later...

Knapsack



> Knapsack Problem
> All-Pairs Shortest Paths with Negative Weights
> Shortest Paths with Negative Weights
> Inference with Hidden Markov Models

Outline for Today



> Problem: Given a weighted graph G on nodes 1 .. n, compute the 
lengths of the shortest paths between all pairs of nodes.
– Θ(n2) outputs
– edge weights are allowed to be negative
– BUT there can be no cycles with negative total weight

> We will see reasons to allow negative weight edges in the future...

> Here, we will discuss the Floyd-Warshall algorithm
– names suggest some non-obvious ideas

All-Pairs Shortest Paths



> Usual approach will work for this problem...
– i.e., consider the sub-problem with a node or edge removed

> However, result is nicest with a different choice of sub-problems

> Sub-problems will use the whole graph G but will return lengths 
of shortest paths that only use 1 .. k as intermediate nodes.

All-Pairs Shortest Paths



> Sub-problems will use the whole graph G but will return shortest 
paths that only use 1 .. k as intermediate nodes on the paths.

> When k = 0, no intermediate nodes are allowed...
– only path from u to v is the edge (u,v) if it exists

> When k > 0, we can use the solution with 1 .. k-1 allowed...
– Q: does the shortest path from u to v go through k?
– If not, then shortest path is the same as with 1 .. k-1 allowed
– If yes, then the shortest path looks like u ~> k ~> v...

All-Pairs Shortest Paths



> Sub-problems will use the whole graph G but will return shortest 
paths that only use 1 .. k as intermediate nodes on the paths.

> When k > 0, we can use the solution with 1 .. k-1 allowed
– Q: does the shortest path from u to v go through k?
– If not, then shortest path is the same as with 1 .. k-1 allowed
– If yes, then the shortest path looks like u ~> k ~> v,

where both the u ~> k part and the k ~> v part do not go through k
> (a cycle could only increase the length since no negative cycles)
> we already know the shortest u ~> k and k ~> v paths

All-Pairs Shortest Paths



> Sub-problems will use the whole graph G but will return shortest 
paths that only use 1 .. k as intermediate nodes on the paths.

> When k = 0, no intermediate nodes are allowed
– only path from u to v is the edge (u,v) if it exists

> When k > 0, we can use the solution with 1 .. k-1 allowed
– shortest path from u to v with 1 .. k allowed = min(

shortest path from u to v with 1 .. k-1 allowed,
shortest path from u to k with 1 .. k-1 allowed +

shortest path from k to v with 1 .. k-1 allowed)

All-Pairs Shortest Paths



float[][] dist = /* new n x n table */

for (int u = 0; u < n; u++)
for (int v = 0; v < n; v++)
dist[u][v] = (u == v)  0 : length[u][v];  // infinity if no edge

for (int k = 0; k < n; k++)
for (int u = 0; u < n; u++)
for (int v = 0; v < n; v++)
dist[u][v] = Math.min(dist[u][v],

dist[u][k] + dist[k][v]);

All-Pairs Shortest Paths Code



> Total running time is O(n3)

> Using n calls to Dikjstra (with a binary heap) is O(n m log n)
– slower if m = O(n2)
– dynamic programming is saving repeated work across the n calls

> Can also compute with Strassen’s algorithm
– (i.e., fast matrix multiplication)
– reduces the running time below O(n3)
– BUT only with some assumptions on the edge weights

All-Pairs Shortest Paths



> Knapsack Problem
> All-Pairs Shortest Paths with Negative Weights
> Shortest Paths with Negative Weights
> Inference with Hidden Markov Models

Outline for Today



> Problem: Given a weighted graph G on nodes 1 .. n and a node s,
compute the length of the shortest paths from s to other nodes.
– edge weights are now allowed to be negative
– BUT there can be no cycles with negative total weight
– just asking for length of shortest path, but can get path itself in usual way

> We will discuss the Bellman-Ford algorithm
– Bellman invented dynamic programming with this algorithm
– again, names also suggest some non-obvious ideas

Shortest Paths with Negative Edges



> Usual approach will not work for this problem...
– (i.e., considering the sub-problem with a node or edge removed)

> (exercise: try it and see what goes wrong here that didn’t with all-pairs paths)
– need to think of a new type of sub-problem to use

> Sub-problems will be the whole graph G but will return lengths 
of shortest paths having at most k edges.
– any edges can be used, but the paths can have at most k of them
– shortest paths cannot have more than n-1 edges

> otherwise, we would have a cycle
> all cycles have non-negative cost

Shortest Paths with Negative Edges



> Sub-problems will be the whole graph G but will return lengths 
of shortest paths having at most k edges.

> When k = 0, there is no path to v unless v = s
– so shortest path is infinite

> When k > 0, we can use the solution with at most k-1 edges
– Q: does the shortest path use k edges?
– If not, then shortest path is the same as with at most k-1 edges
– If yes, then shortest path is s ~> u ➝ v, where (u,v) is an edge

> s ~> has k-1 edges

Shortest Paths with Negative Edges



> Sub-problems will be the whole graph G but will return lengths 
of shortest paths having at most k edges.

> When k = 0, there is no path to v unless v = s
– so shortest path is infinite

> When k > 0, we can use the solution with at most k-1 edges
– shortest path to v with at most k edges = min(

shortest path to v with at most k-1 edges,
min (shortest path to u with at most k-1 edges

+ length of (u,v)) over all edges (u,v))

Shortest Paths with Negative Edges



formula: shortest path to v with at most k edges = min(
shortest path to v with at most k-1 edges,
min (shortest path to u with at most k-1 edges

+ length of (u,v)) over all edges (u,v))

> Naive implementation:

for k = 1 .. n-1
for each v in 1 .. n

lengthk[v] = lengthk-1[v],
for each u in 1 .. n

lengthk[v] = min(lengthk[v],
lengthk-1[u] + edgeLength[u][v])

Shortest Paths with Negative Edges

O(n3) time... no better than Floyd-Warshall



formula: shortest path to v with at most k edges = min(
shortest path to v with at most k-1 edges,
min (shortest path to u with at most k-1 edges

+ length of (u,v)) over all edges (u,v))

> Better implementation:

for k = 1 .. n-1
lengthk = lengthk-1

for each (u,v) in E
lengthk[v] = min(lengthk[v],

lengthk-1[u] + edgeLength[u][v])

Shortest Paths with Negative Edges

O(nm) time



> Only need to remember the lengthk-1 instead of whole table

> Other ways to improve the practical performance
– see the textbook
– worst case is still O(nm)

> Alternative solution: compute shortest path with exactly k edges
– take minimum over all k at the end
– that would allow you to find the min average edge cost instead

Shortest Paths with Negative Edges



> Knapsack Problem
> All-Pairs Shortest Paths with Negative Weights
> Shortest Paths with Negative Weights
> Inference with Hidden Markov Models

Outline for Today



> Definition: a Markov chain is a model of a random process that 
starts a random state x1 and transitions randomly between 
states x1➝ x2➝ x3➝ ... according to fixed probabilities.
– each xi is in a fixed “state set”, 1 .. n
– probabilities pij of each transition, xi➝ xj, depend only on xi and xj

> i.e., it doesn’t matter what states came before xi (“Markov property”)

Inference with Hidden Markov Models
(out of scope)



> Problem: given a Markov chain with states 1 .. n, probabilities qij of 
outputting j when in state i, and specific outputs y1, ..., ym, find the 
sequence of states x1, ..., xm that best explains the output.
– i.e., maximize the probability that the chain goes through x1➝ ... ➝ xm times 

the probability of those states producing those outputs
– i.e., 𝑝2*(𝑝2*24⋯𝑝267826)(𝑞28;8 ⋯𝑞26;6)

Inference with Hidden Markov Models
(out of scope)



> Example: stock market trends
(adapted from “Spoken Language Processing”, Ch. 8)

– Markov chain has states
for up, down, & sideways trends
> cannot go from up to down or vice versa

– Outputs are price changes

> Find the best explanation for
[-1%, -1%, -1%, +10%]

Inference with Hidden Markov Models
(out of scope) up side down

up 0.50 0.25

side 0.50 0.50 0.50

down 0.25 0.50

up side down
+10% 0.33
+1% 0.33 0.50 0.10
-1% 0.33 0.50 0.70
-5% 0.20

best fits down up must have sideways between...



> Many applications including...
– telecommunications

> used by cellular networks (Viterbi founded Qualcomm)
– speech recognition (many)

> e.g. (vastly simplified), determine intended sounds from actual sounds
– includes not just similar sounds but likelihood they would appear next to each other
– (outputs in frequency-domain... use FFT to compute them)

– natural language processing
> parsing

– computational biology

Inference with Hidden Markov Models
(out of scope)



> To compute states that are most likely given the outputs,
apply dynamic programming...

> Start with the last output...

> For each ending state, want to determine the maximum 
probability over all sequences of states ending in that state
– return the state with the largest probability as the last state of the solution

Inference with Hidden Markov Models
(out of scope)



> For each state, want to determine the maximum probability over 
all sequences of states ending in that state.

> For each choice of xm, find the maximum value of 
𝑝2*(𝑝2*24⋯ 𝑝267826)(𝑞28;8 ⋯ 𝑞26;6) over choices of x1, .., xm-1
– this = 𝑝2*(𝑝2*24⋯𝑝267<2678)(𝑞28;8 ⋯𝑞2678;678)𝑝267826𝑞26;6
– if we fix xm-1, then maximizing the first part is the

same problem applied to just y1, ..., ym-1

– if we had the solutions for that, then we could compute this
by taking the maximum over each choice of xm-1

Inference with Hidden Markov Models
(out of scope)



> Sub-problem for each prefix y1, ..., yk of the outputs

> max over x1, .., xk-1 of 𝑝2*(𝑝2*24⋯ 𝑝2=782=)(𝑞28;8 ⋯ 𝑞2=;=)
= max over xk-1 of 𝑝2=782=𝑞2=;= x

(max over x1, ..., xk-2 of 𝑝2*(𝑝2*24⋯ 𝑝2=7<2=78)(𝑞28;8 ⋯ 𝑞2=78;=78))

> Fill in solutions for k = 1 directly from formulas
> Fill in k = 2 ... m using the equation above

> Total running time is O(n2m) (... from double loop on states)

Inference with Hidden Markov Models
(out of scope)



> This problem assumed we were given the Markov chain —
only the states it went through were unknown

> You can also find the Markov model that best fits the data

> Like coordinate descent, usual approach is an iterative algorithm

> Each iteration requires two steps, one of which is
another dynamic programming algorithm

Inference with Hidden Markov Models
(out of scope)


