CSE 417
Dynamic Programming (pt 3)
More General Sub-problems
Reminders

> HW4 is due on Friday
 – start last week
Dynamic Programming Review

> Apply the steps...
 1. Describe solution in terms of solution to any sub-problems
 2. Determine all the sub-problems you’ll need to apply this recursively
 3. Solve every sub-problem (once only) in an appropriate order

> Key question:
 1. Can you solve the problem by combining solutions from sub-problems?

> Count sub-problems to determine running time
 – total is number of sub-problems times time per sub-problem
Review From Last Time: Consider Last Element of Opt Solution

> Q: How does the opt solution use the last element of the input?
 – construct a (small) set of solutions from sub-problems that must include the opt

> Weighted Interval Scheduling
 – opt value = max(opt with last interval, opt without last interval)
 – opt value without last interval is opt value on prefix of the data

> Max Sub-array Sum
 – change the problem to find opt interval ending at A[n-1]
 – again, only need opt values on prefixes of the data

> Optimal Breakout Trades
 – if sell on last day, max of choice where it starts — O(n^2) worst case
Outline for Today

> Knapsack Problem
> All-Pairs Shortest Paths with Negative Weights
> Shortest Paths with Negative Weights
> Inference with Hidden Markov Models
Problem: Given objects with weights $w_1, ..., w_n$ and values $v_1, ..., v_n$ and a weight limit W, find the subset of the items with total weight at most W that maximizes the total value.

- any subset $\{i_1, ..., i_k\}$ such that $w_{i_1} + ... + w_{i_k} \leq W$
- chosen to maximize $v_{i_1} + ... + v_{i_k}$
Knapsack Example

> Consider these items with a weight limit of 11.

> Optimal value is 40
> Optimal solution is \{3, 4\}
Similar problems arise frequently in practice
 – can easily handle adding additional restrictions of various types
 > see HW6
 – another example of robustness to problem changes
Knapsack

> Brute force doesn’t work: there are 2^n subsets to try

> Apply divide and conquer...

> **Q**: Is the last element in the optimal solution?

 – if no, then opt value is the same as on items $1, \ldots, n-1$

 – if yes, then opt value = $v_n +$ opt value on $1, \ldots, n-1$

is this true?
> Brute force doesn't work: there are 2^n subsets to try

> Apply divide and conquer...

> **Q**: Is the last element in the optimal solution?
>
> – if no, then opt value is the same as on items 1, ..., n-1
> – if yes, then opt value = $v_n + \text{opt value on 1, ..., n-1}$

No! Could have $w_n + (\text{weight of opt on 1, ..., n-1}) > W$
Knapsack

> Brute force doesn't work: there are 2^n subsets to try

> Apply divide and conquer...

> **Q:** Is the last element in the optimal solution?
 - if no, then opt value is the same as on items 1, ..., n-1
 - if yes, then opt value = $v_n + (\text{opt value on } 1, ..., n-1 \text{ with weight limit of } W - w_n)$
> Brute force doesn’t work: there are 2^n subsets to try

> Apply divide and conquer...

> **Q**: Is the last element in the optimal solution?
 - if no, then opt value is the same as on items 1, ..., n-1
 - if yes, then opt value = $v_n + (\text{opt value on 1, ..., n-1 with weight limit of } W - w_n)$
Apply dynamic programming...

1. Can find opt value for 1, ..., n and limit W using only
 (a) opt value for 1, ..., n-1 and limit W and
 (b) opt value for 1, ..., n-1 and limit W - w_n
2. Need opt values sub-problems on 1, ..., j-1 and limit V with j ≤ n and V ≤ W
3. Solve each of these starting with V=0 or j=1
 > opt value for 1, ..., j and limit 0 = 0
 > opt value for 1 and limit V = v_1 if w_1 ≤ V and 0 otherwise
 > opt value for 1, ..., j and limit V =
 \[\max(\text{opt value for 1, ..., j-1 and limit V},
 v_j + (\text{opt value for 1, .., j-1 and limit V }- w_j) \quad \text{if } w_j \leq V) \]
Knapsack Example

> Start by filling in first column and first row
> - $w_1 = 1$, so we get v_1 for any $W > 0$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>34</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>
Knapsack Example

For \{1, 2, 3\} and 5: max of spot above (skipping 3) and 18 + spot for \{1, 2\} and 0

<table>
<thead>
<tr>
<th>#</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>34</td>
<td>40</td>
</tr>
</tbody>
</table>
Knapsack Example

<table>
<thead>
<tr>
<th>#</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Calculation:

For \{1, 2, 3, 4\} and 11: max of spot above (skipping 4) and 22 + spot for \{1, 2, 3\} and 5

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>34</td>
<td>40</td>
</tr>
</tbody>
</table>
```
Knapsack Example

<table>
<thead>
<tr>
<th></th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

For \{1, 2, 3, 4\} and 11: max of spot above (skipping 5) and 28 + spot for \{1, 2, 3, 4\} and 4
Knapsack Example

> Recovers the optimal value of 40

<table>
<thead>
<tr>
<th>#</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>{1}</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1, 2}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>34</td>
<td>40</td>
</tr>
</tbody>
</table>
Knapsack

> One sub-problem for each prefix and weight limit, so \(nW \) total

> Running time is \(O(nW) \) since \(O(1) \) per table entry

> This is not efficient if \(W \) is large...
 - theory wants time polynomial in \(\lg W \) (the number of bits used to store \(W \))
 - this algorithm “pseudo-polynomial”
 > (polynomial if the numbers are written in unary, not binary)
 - still extremely useful in practice...
Knapsack

> Running time is $O(nW)$

> This is not efficient if W is large
 > should not actually expect an efficient algorithm because...

> Knapsack is an NP-complete problem
 > we do not believe any such problem has an efficient algorithm
 > that said, this is an “easy” NP-complete problem
 > our algorithm solves it when W is small
 > and you can efficiently approximate the solution for large W
 > more later...
Outline for Today

- Knapsack Problem
- All-Pairs Shortest Paths with Negative Weights
- Shortest Paths with Negative Weights
- Inference with Hidden Markov Models
All-Pairs Shortest Paths

> **Problem:** Given a weighted graph \(G \) on nodes \(1 \ldots n \), compute the lengths of the shortest paths between *all pairs* of nodes.
> - \(\Theta(n^2) \) outputs
> - edge weights are allowed to be **negative**
> - BUT there can be no cycles with negative total weight

> We will see reasons to allow negative weight edges in the future...

> Here, we will discuss the Floyd-Warshall algorithm
> - names suggest some non-obvious ideas
All-Pairs Shortest Paths

> Usual approach will work for this problem...
 > i.e., consider the sub-problem with a node or edge removed

> However, result is nicest with a different choice of sub-problems

> Sub-problems will use the whole graph G but will return lengths of shortest paths that only use 1 .. k as intermediate nodes.
All-Pairs Shortest Paths

> Sub-problems will use the whole graph G but will return shortest paths that only use 1 .. k as *intermediate nodes* on the paths.

> When k = 0, no intermediate nodes are allowed...
 > only path from u to v is the edge (u,v) if it exists

> When k > 0, we can use the solution with 1 .. k-1 allowed...
 > Q: does the shortest path from u to v go through k?
 > If not, then shortest path is the same as with 1 .. k-1 allowed
 > If yes, then the shortest path looks like u ~> k ~> v...
All-Pairs Shortest Paths

Sub-problems will use the whole graph G but will return shortest paths that only use 1 .. k as intermediate nodes on the paths.

When k > 0, we can use the solution with 1 .. k-1 allowed

- Q: does the shortest path from u to v go through k?
- If not, then shortest path is the same as with 1 .. k-1 allowed
- If yes, then the shortest path looks like u ~> k ~> v, where both the u ~> k part and the k ~> v part do not go through k
 > (a cycle could only increase the length since no negative cycles)
 > we already know the shortest u ~> k and k ~> v paths
All-Pairs Shortest Paths

> Sub-problems will use the whole graph G but will return shortest paths that only use 1 .. k as *intermediate nodes* on the paths.

> When k = 0, no intermediate nodes are allowed
 – only path from u to v is the edge (u,v) if it exists

> When k > 0, we can use the solution with 1 .. k-1 allowed
 – shortest path from u to v with 1 .. k allowed = min(
 shortest path from u to v with 1 .. k-1 allowed,
 shortest path from u to k with 1 .. k-1 allowed +
 shortest path from k to v with 1 .. k-1 allowed)
All-Pairs Shortest Paths Code

```java
float[][] dist = /* new n x n table */

for (int u = 0; u < n; u++)
    for (int v = 0; v < n; v++)
        dist[u][v] = (u == v)  0 : length[u][v];  // infinity if no edge

for (int k = 0; k < n; k++)
    for (int u = 0; u < n; u++)
        for (int v = 0; v < n; v++)
            dist[u][v] = Math.min(dist[u][v],
                                  dist[u][k] + dist[k][v]);
```
All-Pairs Shortest Paths

> Total running time is $O(n^3)$

> Using n calls to Dijkstra (with a binary heap) is $O(n m \log n)$
 - slower if $m = O(n^2)$
 - dynamic programming is saving *repeated work* across the n calls

> Can also compute with Strassen’s algorithm
 - (i.e., fast matrix multiplication)
 - reduces the running time below $O(n^3)$
 - BUT only with some assumptions on the edge weights
Outline for Today

- Knapsack Problem
- All-Pairs Shortest Paths with Negative Weights
- Shortest Paths with Negative Weights
- Inference with Hidden Markov Models
Shortest Paths with Negative Edges

> Problem: Given a weighted graph G on nodes 1 .. n and a node s, compute the length of the shortest paths from s to other nodes.
 - edge weights are now allowed to be negative
 - BUT there can be no cycles with negative total weight
 - just asking for length of shortest path, but can get path itself in usual way

> We will discuss the Bellman-Ford algorithm
 - Bellman invented dynamic programming with this algorithm
 - again, names also suggest some non-obvious ideas
Shortest Paths with Negative Edges

> Usual approach will not work for this problem...
 – (i.e., considering the sub-problem with a node or edge removed)
 > (exercise: try it and see what goes wrong here that didn’t with all-pairs paths)
 – need to think of a new type of sub-problem to use

> Sub-problems will be the whole graph G but will return lengths of shortest paths having at most k edges.
 – any edges can be used, but the paths can have at most k of them
 – shortest paths cannot have more than n-1 edges
 > otherwise, we would have a cycle
 > all cycles have non-negative cost
Shortest Paths with Negative Edges

> Sub-problems will be the whole graph G but will return lengths of shortest paths having at most k edges.

> When $k = 0$, there is no path to v unless $v = s$
 > so shortest path is infinite

> When $k > 0$, we can use the solution with at most $k-1$ edges
 > Q: does the shortest path use k edges?
 > If not, then shortest path is the same as with at most $k-1$ edges
 > If yes, then shortest path is $s \rightarrow u \rightarrow v$, where (u,v) is an edge
 > $s \rightarrow$ has $k-1$ edges
Shortest Paths with Negative Edges

> Sub-problems will be the whole graph G but will return lengths of shortest paths having at most k edges.

> When \(k = 0 \), there is no path to \(v \) unless \(v = s \)
 - so shortest path is infinite

> When \(k > 0 \), we can use the solution with at most \(k-1 \) edges
 - shortest path to \(v \) with at most \(k \) edges = \(\min(\)
 shortest path to \(v \) with at most \(k-1 \) edges,
 \(\min(\) shortest path to \(u \) with at most \(k-1 \) edges
 + length of \((u,v)\) over all edges \((u,v)\) \)
Shortest Paths with Negative Edges

formula: shortest path to v with at most k edges = min(
shortest path to v with at most k-1 edges,
min (shortest path to u with at most k-1 edges
+ length of (u,v)) over all edges (u,v))

> Naive implementation:

for k = 1 .. n-1
 for each v in 1 .. n
 length_k[v] = length_{k-1}[v],
 for each u in 1 .. n
 length_k[v] = min(length_k[v],
 length_{k-1}[u] + edgeLength[u][v])

O(n³) time... no better than Floyd-Warshall
Shortest Paths with Negative Edges

formula: shortest path to v with at most k edges = \(\min(\)
shortest path to v with at most k-1 edges,
min (shortest path to u with at most k-1 edges
+ length of (u,v)) over all edges (u,v))

> **Better implementation:**

for k = 1 .. n-1

\[\text{length}_k = \text{length}_{k-1} \]

for each (u,v) in E

\[\text{length}_k[v] = \min(\text{length}_k[v], \text{length}_{k-1}[u] + \text{edgeLength}[u][v]) \]

\(\text{O(nm)} \) time
Shortest Paths with Negative Edges

> Only need to remember the length $k-1$ instead of whole table

> Other ways to improve the practical performance
 – see the textbook
 – worst case is still $O(nm)$

> Alternative solution: compute shortest path with exactly k edges
 – take minimum over all k at the end
 – that would allow you to find the min average edge cost instead
Outline for Today

- Knapsack Problem
- All-Pairs Shortest Paths with Negative Weights
- Shortest Paths with Negative Weights
- Inference with Hidden Markov Models
Inference with Hidden Markov Models (out of scope)

> **Definition:** a Markov chain is a model of a random process that starts a random state \(x_1\) and transitions randomly between states \(x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow \ldots\) according to fixed probabilities.

- each \(x_i\) is in a fixed “state set”, \(1 \ldots n\)
- probabilities \(p_{ij}\) of each transition, \(x_i \rightarrow x_j\), depend only on \(x_i\) and \(x_j\)
 > i.e., it doesn’t matter what states came before \(x_i\) (“Markov property”)
Problem: given a Markov chain with states 1..n, probabilities q_{ij} of outputting j when in state i, and specific outputs $y_1, ..., y_m$, find the sequence of states $x_1, ..., x_m$ that best explains the output.

- i.e., maximize the probability that the chain goes through $x_1 \rightarrow ... \rightarrow x_m$ times the probability of those states producing those outputs
- i.e., $p_{x_1}(p_{x_1x_2} \cdots p_{x_{m-1}x_m})(q_{x_1y_1} \cdots q_{x_my_m})$
Inference with Hidden Markov Models (out of scope)

> Example: stock market trends
 (adapted from “Spoken Language Processing”, Ch. 8)

 – Markov chain has states
 for up, down, & sideways trends
 > cannot go from up to down or vice versa

 – Outputs are price changes

> Find the best explanation for

 \([-1\%, -1\%, -1\%, +10\%]\)

 best fits down up must have sideways between...
Inference with Hidden Markov Models (out of scope)

> Many applications including...
 – telecommunications
 > used by cellular networks (Viterbi founded Qualcomm)
 – speech recognition (many)
 > e.g. (vastly simplified), determine intended sounds from actual sounds
 > includes not just similar sounds but likelihood they would appear next to each other
 > (outputs in frequency-domain... use FFT to compute them)
 – natural language processing
 > parsing
 – computational biology
Inference with Hidden Markov Models (out of scope)

> To compute states that are most likely given the outputs, apply dynamic programming...

> Start with the last output...

> For each ending state, want to determine the maximum probability over all sequences of states ending in that state
 – return the state with the largest probability as the last state of the solution
Inference with Hidden Markov Models (out of scope)

> For each state, want to determine the maximum probability over all sequences of states ending in that state.

> For each choice of \(x_m \), find the maximum value of \(p_{x_1}(p_{x_1x_2} \cdots p_{x_{m-1}x_m})(q_{x_1y_1} \cdots q_{x_my_m}) \) over choices of \(x_1, \ldots, x_{m-1} \)

– this = \(p_{x_1}(p_{x_1x_2} \cdots p_{x_{m-2}x_{m-1}})(q_{x_1y_1} \cdots q_{x_{m-1}y_{m-1}})p_{x_{m-1}x_m}q_{x_my_m} \)

– if we fix \(x_{m-1} \), then maximizing the first part is the same problem applied to just \(y_1, \ldots, y_{m-1} \)

– if we had the solutions for that, then we could compute this by taking the maximum over each choice of \(x_{m-1} \)
Inference with Hidden Markov Models (out of scope)

> Sub-problem for each prefix $y_1, ..., y_k$ of the outputs

> max over $x_1, ..., x_{k-1}$ of $p_{x_1}(p_{x_1x_2} \cdots p_{x_{k-1}x_k})(q_{x_1y_1} \cdots q_{x_ky_k})$
 = max over x_{k-1} of $p_{x_{k-1}x_k}q_{x_ky_k} \times$
 (max over $x_1, ..., x_{k-2}$ of $p_{x_1}(p_{x_1x_2} \cdots p_{x_{k-2}x_{k-1}})(q_{x_1y_1} \cdots q_{x_{k-1}y_{k-1}}))$

> Fill in solutions for $k = 1$ directly from formulas
> Fill in $k = 2$... m using the equation above

> Total running time is $O(n^2m)$ (... from double loop on states)
Inference with Hidden Markov Models (out of scope)

> This problem assumed we were given the Markov chain — only the states it went through were unknown

> You can also find the Markov model that best fits the data

> Like coordinate descent, usual approach is an iterative algorithm

> Each iteration requires two steps, one of which is another dynamic programming algorithm