CSE 417 Dynamic Programming (pt 3) More General Sub-problems

Reminders

> HW4 is due on Friday

- start last week

Dynamic Programming Review

> Apply the steps...

1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you'll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order
> Key question:
4. Can you solve the problem by combining solutions from sub-problems?
> Count sub-problems to determine running time

- total is number of sub-problems times time per sub-problem

Review From Last Time: Consider Last Element of Opt Solution

> Q: How does the opt solution use the last element of the input?

- construct a (small) set of solutions from sub-problems that must include the opt
> Weighted Interval Scheduling
- opt value = max(opt with last interval, opt without last interval)
- opt value without last interval is opt value on prefix of the data
> Max Sub-array Sum
- change the problem to find opt interval ending at A[n-1]
- again, only need opt values on prefixes of the data
> Optimal Breakout Trades
- if sell on last day, max of choice where it starts - O(n^{2}) worst case

Outline for Today

> Knapsack Problem
> All-Pairs Shortest Paths with Negative Weights
> Shortest Paths with Negative Weights
> Inference with Hidden Markov Models

Knapsack

> Problem: Given objects with weights w_{1}, \ldots, w_{n} and values $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$ and a weight limit W , find the subset of the items with total weight at most W that maximizes the total value.

- any subset $\left\{i_{1}, \ldots, i k\right\}$ such that $w_{i_{1}}+\ldots+w_{i_{k}} \leq W$
- chosen to maximize $v_{i_{1}}+\ldots+v_{i_{k}}$

Knapsack Example

> Consider these items with a weight limit of 11 .
> Optimal value is 40
> Optimal solution is $\{3,4\}$

$\#$	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack

> Similar problems arise frequently in practice

- can easily handle adding additional restrictions of various types
> see HW6
- another example of robustness to problem changes

Knapsack

> Brute force doesn't work: there are 2^{n} subsets to try
> Apply divide and conquer...
> Q: Is the last element in the optimal solution?

- if no, then opt value is the same as on items $1, \ldots, n-1$
- if yes, then opt value $=v_{n}+$ opt value on $1, \ldots, n-1$
is this true?

Knapsack

> Brute force doesn't work: there are 2^{n} subsets to try
> Apply divide and conquer...
> Q: Is the last element in the optimal solution?

- if no, then opt value is the same as on items $1, \ldots, n-1$
- if yes, then opt value $=v_{n}+$ opt value on $1, \ldots, n-1$

No! Could have $w_{n}+($ weight of opt on $1, \ldots, n-1)>W$

Knapsack

> Brute force doesn't work: there are 2^{n} subsets to try
> Apply divide and conquer...
> Q: Is the last element in the optimal solution?

- if no, then opt value is the same as on items $1, \ldots, n-1$
- if yes, then opt value $=v_{n}+\left(o p t ~ v a l u e ~ o n ~ 1, \ldots, n-1\right.$ with weight limit of $\left.W-w_{n}\right)$

Knapsack

> Brute force doesn't work: there are 2^{n} subsets to try
> Apply divide and conquer...
> Q: Is the last element in the optimal solution?

- if no, then opt value is the same as on items $1, \ldots, n-1$
- if yes, then opt value $=v_{n}+$ (opt value on $1, \ldots, n-1$ with weight limit of $W-w_{n}$)

Knapsack

> Apply dynamic programming...

1. Can find opt value for $1, \ldots, n$ and limit W using only
(a) opt value for $1, \ldots, \mathrm{n}-1$ and limit W and
(b) opt value for $1, \ldots, \mathrm{n}-1$ and limit $\mathrm{W}-\mathrm{w}_{\mathrm{n}}$
2. Need opt values sub-problems on $1, \ldots, \mathrm{j}-1$ and limit V with $\mathrm{j} \leq \mathrm{n}$ and $\mathrm{V} \leq \mathrm{W}$
3. Solve each of these starting with $\mathrm{V}=0$ or $\mathrm{j}=1$
> opt value for $1, \ldots$, , and limit $0=0$
$>$ opt value for 1 and limit $\mathrm{V}=\mathrm{v}_{1}$ if $\mathrm{w}_{1} \leq \mathrm{V}$ and 0 otherwise
> opt value for $1, \ldots, j$ and limit $\mathrm{V}=$
max(opt value for $1, \ldots, j-1$ and limit V ,
$v_{j}+\left(\right.$ opt value for $1, \ldots, j-1$ and limit $\left.\mathrm{V}-\mathrm{w}_{\mathrm{j}}\right) \quad$ if $\mathrm{w}_{\mathrm{j}} \leq \mathrm{V}$)

Knapsack Example

$\#$	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

\qquad w+1

Knapsack Example

$\#$	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

\qquad W+1

Knapsack Example

$\#$	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

\qquad W+1

$>$ For $\{1,2,3,4\}$ and 11: max of spot above (skipping 4) and
$22+$ spot for $\{1,2,3\}$ and 5

Knapsack Example

$\#$	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

\qquad W+1

		0	1	2	3	4	5	6	7	8	9	10	11
	\{ 1 \}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{ 1,2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	$\{1,2,3\}$	0	1	6	7	7	18	19	24	25	25	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24	28	29	29	40
	$\{1,2,3,4,5\}$	0	1	6	7	7	18	22	28	29	34	34	40

$>$ For $\{1,2,3,4,5\}$ and 11: max of spot above (skipping 5) and $28+$ spot for $\{1,2,3,4\}$ and 4

Knapsack Example

$\#$	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	\{ 1 \}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{ 1,2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	$\{1,2,3\}$	0	1	6	7	7	18	19	24	25	25	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24	28	29	29	40
	$\{1,2,3,4,5\}$	0	1	6	7	7	18	22	28	29	34	34	40

Knapsack

> One sub-problem for each prefix and weight limit, so nW total
$>$ Running time is $\mathrm{O}(\mathrm{nW})$ since $\mathrm{O}(1)$ per table entry
> This is not efficient if W is large...

- theory wants time polynomial in Ig W (the number of bits used to store W)
- this algorithm "pseudo-polynomial"
> (polynomial if the numbers are written in unary, not binary)
- still extremely useful in practice...

Knapsack

> Running time is $\mathrm{O}(\mathrm{nW})$
> This is not efficient if W is large

- should not actually expect an efficient algorithm because...
> Knapsack is an NP-complete problem
- we do not believe any such problem has an efficient algorithm
- that said, this is an "easy" NP-complete problem
> our algorithm solves it when W is small
$>$ and you can efficiently approximate the solution for large W
- more later...

Outline for Today

> Knapsack Problem
> All-Pairs Shortest Paths with Negative Weights
> Shortest Paths with Negative Weights
> Inference with Hidden Markov Models

All-Pairs Shortest Paths

> Problem: Given a weighted graph G on nodes 1 .. n, compute the lengths of the shortest paths between all pairs of nodes.

- $\Theta\left(n^{2}\right)$ outputs
- edge weights are allowed to be negative
- BUT there can be no cycles with negative total weight
> We will see reasons to allow negative weight edges in the future...
> Here, we will discuss the Floyd-Warshall algorithm
- names suggest some non-obvious ideas

All-Pairs Shortest Paths

> Usual approach will work for this problem...

- i.e., consider the sub-problem with a node or edge removed
$>$ However, result is nicest with a different choice of sub-problems
> Sub-problems will use the whole graph G but will return lengths of shortest paths that only use 1 .. k as intermediate nodes.

All-Pairs Shortest Paths

> Sub-problems will use the whole graph G but will return shortest paths that only use 1 .. k as intermediate nodes on the paths.
> When $\mathrm{k}=0$, no intermediate nodes are allowed...

- only path from u to v is the edge (u, v) if it exists
> When $\mathrm{k}>0$, we can use the solution with 1 .. k-1 allowed...
- Q: does the shortest path from u to v go through k ?
- If not, then shortest path is the same as with 1 .. k-1 allowed
- If yes, then the shortest path looks like $u \sim>k \sim>v . .$.

All-Pairs Shortest Paths

> Sub-problems will use the whole graph G but will return shortest paths that only use 1 .. k as intermediate nodes on the paths.
> When k > 0, we can use the solution with 1 .. k-1 allowed

- Q: does the shortest path from u to v go through k ?
- If not, then shortest path is the same as with 1 .. k -1 allowed
- If yes, then the shortest path looks like $u \sim>k \sim>v$, where both the $u \sim>k$ part and the $k \sim>v$ part do not go through k
$>$ (a cycle could only increase the length since no negative cycles)
$>$ we already know the shortest $\mathrm{u} \sim \mathrm{k}$ and $\mathrm{k} \sim>\mathrm{v}$ paths

All-Pairs Shortest Paths

> Sub-problems will use the whole graph G but will return shortest paths that only use 1 .. k as intermediate nodes on the paths.
> When $\mathrm{k}=0$, no intermediate nodes are allowed

- only path from u to v is the edge (u, v) if it exists
> When $\mathrm{k}>0$, we can use the solution with 1 .. k -1 allowed
- shortest path from u to v with 1 .. k allowed $=\min ($ shortest path from u to v with 1 .. k-1 allowed, shortest path from u to k with 1 .. k-1 allowed +
shortest path from k to v with 1 .. $k-1$ allowed)

All-Pairs Shortest Paths Code

```
float[][] dist = /* new n x n table */
```

```
for (int \(u=0 ; u<n ; u++\) )
    for (int \(v=0 ; v<n ; v++\) )
        dist \([u][v]=(u==v) 0\) : length[u][v]; // infinity if no edge
```

for (int $k=0 ; k<n ; k++$)
for (int $u=0 ; u<n ; u++$)
for (int $v=0 ; \vee<n ; v++$)
dist $[u][v]=$ Math.min(dist[u][v],
dist[u][k] + dist[k][v]);

All-Pairs Shortest Paths

> Total running time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
> Using n calls to Dikjstra (with a binary heap) is $\mathrm{O}(\mathrm{n} \mathrm{m} \log \mathrm{n}$)

- slower if $m=O\left(n^{2}\right)$
- dynamic programming is saving repeated work across the n calls
> Can also compute with Strassen's algorithm
- (i.e., fast matrix multiplication)
- reduces the running time below $O\left(n^{3}\right)$
- BUT only with some assumptions on the edge weights

Outline for Today

> Knapsack Problem
> All-Pairs Shortest Paths with Negative Weights
> Shortest Paths with Negative Weights

> Inference with Hidden Markov Models

Shortest Paths with Negative Edges

> Problem: Given a weighted graph G on nodes 1 .. n and a node s, compute the length of the shortest paths from s to other nodes.

- edge weights are now allowed to be negative
- BUT there can be no cycles with negative total weight
- just asking for length of shortest path, but can get path itself in usual way
> We will discuss the Bellman-Ford algorithm
- Bellman invented dynamic programming with this algorithm
- again, names also suggest some non-obvious ideas

Shortest Paths with Negative Edges

> Usual approach will not work for this problem...

- (i.e., considering the sub-problem with a node or edge removed)
> (exercise: try it and see what goes wrong here that didn't with all-pairs paths)
- need to think of a new type of sub-problem to use
> Sub-problems will be the whole graph G but will return lengths of shortest paths having at most k edges.
- any edges can be used, but the paths can have at most k of them
- shortest paths cannot have more than n-1 edges
> otherwise, we would have a cycle
> all cycles have non-negative cost

Shortest Paths with Negative Edges

> Sub-problems will be the whole graph G but will return lengths of shortest paths having at most k edges.
> When $\mathrm{k}=0$, there is no path to v unless $\mathrm{v}=\mathrm{s}$

- so shortest path is infinite
> When $\mathrm{k}>0$, we can use the solution with at most k - 1 edges
- Q: does the shortest path use k edges?
- If not, then shortest path is the same as with at most k-1 edges
- If yes, then shortest path is $s \sim u \rightarrow v$, where (u, v) is an edge
> s ~ has k-1 edges

Shortest Paths with Negative Edges

> Sub-problems will be the whole graph G but will return lengths of shortest paths having at most k edges.
> When $\mathrm{k}=0$, there is no path to v unless $\mathrm{v}=\mathrm{s}$

- so shortest path is infinite
> When $\mathrm{k}>0$, we can use the solution with at most k -1 edges
- shortest path to v with at most k edges $=\min ($ shortest path to v with at most k-1 edges, min (shortest path to u with at most k-1 edges
+ length of (u, v)) over all edges $(u, v))$

Shortest Paths with Negative Edges

formula: shortest path to v with at most k edges $=\min ($ shortest path to v with at most $\mathrm{k}-1$ edges, \min (shortest path to u with at most $\mathrm{k}-1$ edges

+ length of (u, v)) over all edges (u, v))
> Naive implementation:

```
for k = 1 .. n-1
    for each v in 1 .. n
        length }[\textrm{k}]=\mp@subsup{l}{\mathrm{ length }}{k-1
        for each u in 1 .. n
            length}\mp@subsup{}{k}{}[v]= min(length [v [v]
                length }\mp@subsup{\textrm{k}}{\mathbf{-}}{[}[\textrm{u}]+\mathrm{ edgeLength[u][v])
```


Shortest Paths with Negative Edges

formula: shortest path to v with at most k edges $=\min ($ shortest path to v with at most k -1 edges, min (shortest path to u with at most k -1 edges

+ length of (u, v)) over all edges (u, v))
> Better implementation:
O(nm) time

```
for k = 1 .. n-1
    length}\mp@subsup{}{k}{}=\mp@subsup{\mathrm{ length}}{k-1}{
    for each (u,v) in E
        length}\mp@subsup{}{k}{}[v]= min(length [ [v],
    length}\mp@subsup{}{k-1}{[u] + edgeLength[u][v])
```


Shortest Paths with Negative Edges

> Only need to remember the length ${ }_{k-1}$ instead of whole table
> Other ways to improve the practical performance

- see the textbook
- worst case is still $O(n m)$
> Alternative solution: compute shortest path with exactly k edges
- take minimum over all k at the end
- that would allow you to find the min average edge cost instead

Outline for Today

> Knapsack Problem
> All-Pairs Shortest Paths with Negative Weights
> Shortest Paths with Negative Weights
> Inference with Hidden Markov Models

Inference with Hidden Markov Models (out of scope)

> Definition: a Markov chain is a model of a random process that starts a random state x_{1} and transitions randomly between states $x_{1} \rightarrow x_{2} \rightarrow x_{3} \rightarrow \ldots$ according to fixed probabilities.

- each x_{i} is in a fixed "state set", 1 .. n
- probabilities p_{ij} of each transition, $\mathrm{x}_{\mathrm{i}} \rightarrow \mathrm{x}_{\mathrm{j}}$, depend only on x_{i} and x_{j} > i.e., it doesn't matter what states came before x_{i} ("Markov property")

Inference with Hidden Markov Models (out of scope)

> Problem: given a Markov chain with states 1 .. n, probabilities $q_{i j}$ of outputting j when in state i , and specific outputs $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}$, find the sequence of states x_{1}, \ldots, x_{m} that best explains the output.

- i.e., maximize the probability that the chain goes through $x_{1} \rightarrow \ldots \rightarrow x_{m}$ times the probability of those states producing those outputs
- i.e., $p_{x_{1}}\left(p_{x_{1} x_{2}} \cdots p_{x_{m-1} x_{m}}\right)\left(q_{x_{1} y_{1}} \cdots q_{x_{m} y_{m}}\right)$

Inference with Hidden Markov Models

 (out of scope)> Example: stock market trends
(adapted from "Spoken Language Processing", Ch. 8)

- Markov chain has states for up, down, \& sideways trends
> cannot go from up to down or vice versa
- Outputs are price changes

	up	side	down
up	0.50	0.25	
side	0.50	0.50	0.50
down		0.25	0.50

$>$ Find the best explanation for

Inference with Hidden Markov Models (out of scope)

> Many applications including...

- telecommunications
> used by cellular networks (Viterbi founded Qualcomm)
- speech recognition (many)
> e.g. (vastly simplified), determine intended sounds from actual sounds
- includes not just similar sounds but likelihood they would appear next to each other
- (outputs in frequency-domain... use FFT to compute them)
- natural language processing
> parsing
- computational biology

Inference with Hidden Markov Models (out of scope)

> To compute states that are most likely given the outputs, apply dynamic programming...
> Start with the last output...
> For each ending state, want to determine the maximum probability over all sequences of states ending in that state

- return the state with the largest probability as the last state of the solution

Inference with Hidden Markov Models (out of scope)

> For each state, want to determine the maximum probability over all sequences of states ending in that state.
> For each choice of x_{m}, find the maximum value of $p_{x_{1}}\left(p_{x_{1} x_{2}} \cdots p_{x_{m-1} x_{m}}\right)\left(q_{x_{1} y_{1}} \cdots q_{x_{m} y_{m}}\right)$ over choices of $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}-1}$

- this $=p_{x_{1}}\left(p_{x_{1} x_{2}} \cdots p_{x_{m-2} x_{m-1}}\right)\left(q_{x_{1} y_{1}} \cdots q_{x_{m-1} y_{m-1}}\right) p_{x_{m-1} x_{m}} q_{x_{m} y_{m}}$
- if we fix $\mathrm{x}_{\mathrm{m}-1}$, then maximizing the first part is the same problem applied to just $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}-1}$
- if we had the solutions for that, then we could compute this by taking the maximum over each choice of x_{m-1}

Inference with Hidden Markov Models (out of scope)

$>$ Sub-problem for each prefix y_{1}, \ldots, y_{k} of the outputs
$>$ max over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}-1}$ of $p_{x_{1}}\left(p_{x_{1} x_{2}} \cdots p_{x_{k-1} x_{k}}\right)\left(q_{x_{1} y_{1}} \cdots q_{x_{k} y_{k}}\right)$
$=$ max over $\mathrm{x}_{\mathrm{k}-1}$ of $p_{x_{k-1} x_{k}} q_{x_{k} y_{k}} \mathrm{X}$
(max over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}-2}$ of $\left.p_{x_{1}}\left(p_{x_{1} x_{2}} \cdots p_{x_{k-2} x_{k-1}}\right)\left(q_{x_{1} y_{1}} \cdots q_{x_{k-1} y_{k-1}}\right)\right)$
> Fill in solutions for $\mathrm{k}=1$ directly from formulas
> Fill in $\mathrm{k}=2$... m using the equation above
> Total running time is $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$ (... from double loop on states)

Inference with Hidden Markov Models (out of scope)

> This problem assumed we were given the Markov chain only the states it went through were unknown
> You can also find the Markov model that best fits the data
> Like coordinate descent, usual approach is an iterative algorithm
> Each iteration requires two steps, one of which is another dynamic programming algorithm

